
Searching very large bodies of data using a transparent peer-to-peer proxy

Mike Taylor Marc Cromme

Index Data UK Index Data DK
48A Carysfort Road Købmagergade 43

London N8 8RB 1150 Copenhagen K
mike@indexdata.com marc@indexdata.dk
www.indexdata.com www.indexdata.dk

Abstract
While individual data stores are increasingly large, the ag-
gregate size of the Internet dwarfs them all and always
will. We consider an approach to searching rich documents
across a very large network of individual data stores using a
transparent peer-to-peer proxy. This approach is dependent
on the use of a standardised search-and-retrieve protocol
sufficiently rich to enable semantics to be induced on both
its documents and its queries. Candidate protocols include
the mature Z39.50 and the more recent SRW/U, of which the
latter is considered more “web-friendly”. Networks of the
peers underlying this approach to large-repository search
and retrieval may take on widely differing topologies, and
queries may be routed in widely different ways. Optimal
values of tuning parameters may be determined using an
evolutionary system in which simulations of different config-
urations compete against each other. The European collab-
orative project Alvis is using the approach outlined in this
paper to build a semantic peer-to-peer search engine aggre-
gated across multiple subject-specific repositories. Among
the problems still to be solved, the matter of how to merge
results from multiple peers is the most difficult.

1. Introduction
The ever-increasing availability and ever-decreasing cost of
mass storage hardware enables organisations and even indi-
viduals to maintain increasingly huge compendia of data on
the computer systems that they are responsible for. How-
ever, we should not be too proud of these individual techno-
logical wonders we’ve created: the ability to store terrabytes
of information in any one repository is insignificant com-
pared with the power of the Internet. By combining mul-
tiple repositories across the Internet, it is possible to form
data stores that exceed the those of the largest system by
many orders of magnitude. This paper outlines an approach
that leverages the use of established semantically rich In-
ternet protocols to gain access to large distributed bodies of

data via a transparent peer-to-peer network. We describe
the approach in a series of incremental steps.

2. Standardised semantically rich
search-and-retrieve protocol

We begin by considering the advantages of using a standard-
ised search-and-retrieve protocol that is rich enough to have
a semantic interpretation induced on it. Although HTTP
is standardised and can be used for searching and retrieval,
on its own it does not meet our need because there are no
standard semantics attached to the URLs requested, the data
POSTed or the documents returned. What is needed is a
protocol that, like HTTP, is well enough defined to be in-
dependently implemented by clients and servers with con-
fidence that they will interoperate, but which also specifies
standard semantics for structured queries and responses.

At present, there are two realistic contender protocols for
this role: ANSI/NISO Z39.50 [12] and SRW/U [6]. While
either Z39.50 or SRW/U would be suitable for the archi-
tecture we outline in this paper, we concentrate on SRW/U,
due to the likely faster uptake of this standard.

2.1 Z39.50

Z39.50 is a mature and powerful standard initially devel-
oped under the auspices of the American standards bodies
ANSI and NISO. In 1998, it was ratified by ISO as interna-
tional standard ISO 23950, but it is still known mostly by
the older name. The standard is maintained by an agency
sponsored by the Library of Congress. The data structures
transmitted in Z39.50 dialogues are expressed using ASN.1
and encoded using BER - technologies which are consid-
ered either antiquated or mature in various communities.

Historically, Z39.50 has been most extensively deployed
in the library world, as a means of locating and viewing
MARC calalogue records. However, it has also been used

1



in domains as diverse as government information, geospa-
tial metadata, chemical formulae and navigating hierarchi-
cal thesauri.

Simple object-oriented APIs for building Z39.50 clients
are available as free implementations in most of the major
programming languages [14].

2.2 SRW/U

The use of ASN.1 and BER in Z39.50 is widely perceived
- whether rightly or not - as mounting a barrier to im-
plementation. In response to this perception, work began
in December 2000 on recasting the powerful and expres-
sive Z39.50 semantics in terms of mechanism more read-
ily understood in the contemporary information environ-
ment. The result of this effort is a family of two new pro-
tocols: SRW (the Search/Retrieve Web-service) and SRU
(Search/Retrieve URL). Their specifications are adminis-
tered by the SRW Editorial Board, which is made up eleven
members from institutions including commercial compa-
nies, libraries and universities.

SRW uses SOAP to deliver structured query payloads
from client to server, and responses including zero or more
records from server to client. The requests and responses
are both expressed in XML. Several operations are defined,
each consisting of a request-response pair. These including
“searchRetrieve”, “explain” (in which a client asks a server
to describe its capabilities) and “scan” (for browsing index
entries). The specification for a related Update operation is
under development [13] and will be released during 2005.

SRU is semantically equivalent to SRW, but uses a sim-
pler, REST-like, mechanism as its transport. SRU requests
are expressed as URLs with query parameters that carry
information equivalent to that in the corresponding SRW-
request XML documents. SRU response payloads are iden-
tical to those of SRW, but are returned directly as the content
of the HTTP response rather than being wrapped in a SOAP
envelope as in SRW.

Note that SRW and SRU are both based on HTTP, and
can be legitimately seen as profiles of that protocol. They
represent a refinement of, and greater precision in, what in-
formation is transmitted over HTTP and how that informa-
tion is interpreted. Thus, while HTTP is not itself suitable
for IR, it is a very suitable substrate for a protocol that fa-
cilitates rich IR.

Although SRW was initially seen as the more suitable
vehicle for serious IR usage, uptake of SRU has been
quicker and broader. SRU implementations seem in gen-
eral to outperform related SRW implementations due to the
additional XML-parsing overhead in the SOAP-based pro-
tocol.

A very important aspect of structured search-and-
retrieve protocols such as Z39.50 and the SRW/U family is

the provision of a structured query language in which rich
queries can by expressed. Z39.50 uses an esoteric binary
query format known as the “Type-1 query”, which need not
concern us here. SRW/U improves on its predecessor by
using a textual query format which is at once intuitively
understandable and powerfully expressive - capable of rep-
reseting all the queries that can be expressed in Z39.50’s
Type-1 notation. This format is known as CQL [5] (Com-
mon Query Language), and is exemplified by queries such
as the following:

dinosaur
title=dinosaur
title=(dinosaur or pterosaur)

and author=martil
dc.title=*saur and dc.author=martill
title exact "the complete dinosaur"

and date < 2000
name=/phonetic "smith"
fish prox/distance<3/unit=sentence frog

This query language allows substantially greater preci-
sion than the more traditional type of IR query consisting
only of a “bag of words” not related in any specific way or
tied at any particular part of the documents being searched.

3. Transparent protocol proxy
The Z39.50 and SRW/U protocols can be proxied, just
like HTTP. At present there are not many proxy programs
available for these protocols, although this seems likely to
change. One such is the YAZ Proxy [15]. Because the
Z39.50 and SRW/U protocols that it handles are so much
richer than HTTP, it can perform a wider range of services
related to to those protocols. For example, an installation
of YAZ Proxy at the Library of Congress [8] enhances the
library’s Z39.50 service in several ways: it increases perfor-
mance for clients and reduces server load by caching and re-
using initialised server sessions; it throttles access to server
resources, introducing delays to reduce the frequency with
which a single client’s requests reach the back end; it pro-
tects the server from malformed queries that cause crashes,
by recognising them and sending an appropriate diagnostic
back to the client; and it generates detailed logs.

4. Fan-out proxy
One of the more ambitious services that a transparent proxy
could provide is to “fan out” searches to more than one
server, gathering and merging the various servers’ results
and returning them to the client. In this way, meta-searching
may be achieved without the need for the client to know
anything about either the process or the configuration. This
approach is advantageous because the provision of such a

2



fan-out proxy allows existing client applications to be eas-
ily reconfigured to metasearch without requiring any code
changes.

Because proxies appear as servers to clients and as
clients to servers, it follows that proxies may by chained
together, each one in the chain seeing its neighbours as a
client and a server. For fan-out proxies, this chaining capa-
bility is very powerful, giving rise to trees rather than chains
of servers. A naive Z39.50 or SRW/U client can search a
server A; that server may in fact be a fan-out proxy that
searches server M, N and O; server N may in turn also be
a fan-out proxy, searching servers X, Y and Z. As a result,
the client searches all the servers M, O, X, Y and Z without
needing to know anything about the topology below it.

There is no effective limit to the depth with which fan-
out proxies can search further proxies, so that an arbitrarily
“bushy” tree topology can be achieved.

Figure 1: Complex topology with multiple fan-out proxies
arranged in a tree.

In principle, then, fan-out proxies are useful and pow-
erful. In practice, however, they are not used because they
raise too many administrative problems. Each proxy’s ad-
ministrators need to maintain a database of known servers
- a problem that grows proportionally more troublesome as
the total size of the network increases, since loop detection
becomes more difficult. In consequence, a tree of fan-out
proxies does not scale well, and so is an unsatisfactory so-
lution to the problem of searching in very large distributed
repositories. A different approach is needed.

5. Peer-to-peer proxy
Our preferred approach, then, introduces a different kind of
proxy: a loose federation of nodes forming a peer-to-peer
network. Each peer in the network may function on behalf
of a client (as a way of injecting a search into the network),
or of a server (as way of executing the query against a suit-
able individual repository). Peers may also represent both a
client and a server (“servent”) as in Gnutella [9] and similar
protocols; and it also possible for a peer to be a part of a net-
work while not associated with any client or server, purely
to contribute to the routing of queries.

Peers pass queries between themselves using their own
dedicated protocol, separate from the client-server proto-
col; it is the task of the network as a whole to find the most
appropriate servers to answer each query, and to this end,
peers continually discover more information about each
other. The topology of the peer network, then, is dynamic -
connections between peers are constantly being replumbed
to connect peers that can benefit more fully from communi-
cation with each other.

From the perspective of both client and server, the peer
network appears as a single, simple proxy: all the complex-
ity of the network is internal to it, concealed in a “cloud”
from the applications that use it.

Figure 2: Peer-to-peer topology with peers communicating
between themselves behind the scenes. The entire peer-to-
peer network masquerades as a server to its clients, and a a
client to all the servers.

6. Operation of the peer-to-peer net-
work

A peer-to-peer network proxy allows the administrative
problems of the fan-out tree to be solved by automated
means. Cruicially, no peer requires a human administrator
to maintain a catalogue of servers to search. Instead, each
peer dynamically maintains a pool of “neighbour” peers that
it knows about. Neighbours which seem not to be very
useful (e.g. because they do not forward many queries,

3



or do not provide useful responses to the queries they are
asked to answer) may be dropped from the pool; and new
neighbours may be discovered via interactions with existing
neighbours, and be added to the pool.

An important consequence of this approach is that a new
peer can join the network without any administrator needing
to take action: instead, the peer connects to any peer that is
already in the network, and through that peer quickly finds
out about useful neighbours; and it, in turn, is discovered by
peers that were on the network before it.

The problem of searching within the network can be seen
from the perspective of the query itself, wandering between
peers in search of a server that can answer it. The main job
of a peer is to assist the query on its quest, routing it to its
most relevant neighbours. The assessment of a neighbour’s
relevance to a query can be done using relatively primi-
tive mechanism such as checking each neighbour’s previ-
ous record in dealing with queries that contain the same or
similar leaf terms. More sophisticated mechanisms can be
introduced when additional information is available, for ex-
ample if a peer advertises what subject areas it covers.

Suppose a particular peer, Peer A, has to handle a query
and does so by passing it to a neighbour, Peer B. Peer B
may not be able to handle the query directly, but has an-
other neighbour, Peer G, that can. In this case, the informa-
tion passed back from B to A includes details about Peer G,
so that A can add it to its own pool of neighbours if appro-
priate.

It is wasteful if a query is ever forwarded back to a peer
that it has already passed through. Detecting and avoiding
this kind of loop is difficult using a tree of fan-out prox-
ies, but easy in the peer-to-peer network proxy: this aspect
of query routing is handled at the protocol level, using fa-
cilities that do not exist in client-server search-and-retrieve
protocols such as SRW/U.

As a query travels through the network, it carries with it a
count of how many more peers it is allowed to go through, to
ensure that its journey terminates. This is called the query’s
Time To Live, or TTL. When a given peer is handling the
query, it can allocate the remaining TTL in various ways:
the query might be forwarded to a single neighbour with
all its TTL; it might be forwarded to two equally promising
neighbours, with each forwarded query receiving half of the
TTL; or it might be passed to several neighbours with the
remaining TTL allocated in proportion to how relevant the
destinations seems to the query. We envisage that different
peers will use different forwarding strategies, and that this
“ecological diversity” will help to make the network robust.

Queries may carry with them an indication of what for-
warding strategy they prefer. Peers associated with clients
may use the facility to create “tracer bullet” queries, which
make many branchless hops before finally fanning out
broadly using their last few hops. Such “long, thin” query

trajectories provide a means for peers to periodically probe
remote parts of the network in order to discover new rele-
vant neighbours.

Frameworks have been proposed for obtaining semantic
interoperability among data sources in a bottom-up, semi-
automatic manner without relying on pre-existing, global
semantic models [1, 11]. Semantic alignment of query in-
terpretation between peers in the network is greatly facili-
tated by the use of CQL, because this language makes use of
“context sets”, which rigorously define the semantics of the
indexes they provide for use in queries. For example, the
index-name “dc.title” indicates the “title” index as defined
in the “dc” context set, which means title in the Dublin Core
sense, as opposed to the land registry sense or the heraldry
sense. This precision allows searching within well-defined
and unambiguous semantic categories which are guaranteed
to be understood the same way by both client and server.

7. Using peer-to-peer proxies in ALVIS
The ongoing European collaborative project ALVIS [4, 7]
is using the approach outlined in this paper to build a se-
mantic peer-to-peer search engine aggregated across multi-
ple subject-specific repositories. The complete ALVIS sys-
tem includes semantic components beyond the scope of this
paper, including linguistic analysis in multiple languages,
the use of subject-specific taxonomies, and various appli-
cations of relevance. In ALVIS, the peer-to-peer approach
described in this paper is elaborated by a second, lighter
weight peer-to-peer network, which uses distributed hash
tables to pre-analyse queries and so to find a suitable peer
to use as the query’s entry point into the system.

The P2P-IR architecture [2, 3] developed in ALVIS is 5-
layered, where the lowest three layers implement a common
key based Distributed Hash Table (DHT).

On top of that layer 4 implements the query-adaptive
[10] update procedures needed to keep the DHT in good
working order to route structured semantic queries to the
peers capabile of serving suitable documents.

Finally, layer 5 is the query processing at the local peer,
in our case represented by a Z39.50 or SRW/U enabled
data storage node, which is able to resolve CQL queries to
ranked hit lists and to retrieve the indicated documents. It
is implemented using the Zebra Z39.50/SRW/U server and
semi-structured text and XML indexer [16].

In ALVIS terminology, the layer 5 capable peers are
termed “superpeers” or “fat peers”, and those making up the
overlay network (layer 1-4) are known simply as “peers”.

Within individual ALVIS superpeers, subject-specific
searching is enriched by the use of linguistic techniques to
break apart documents, mark up parts of speech and assess
relevance to various subject areas, the better to perform the
final matching of queries to documents. Because these re-

4



finements are brough to bear within individual peers, they
do not affect the whole-system topology.

8. Conclusion
This new approach to searching large distributed reposito-
ries is very promising for at least three reasons: because
its decentralisation aids scalability; because it removes the
need for costly manual administration; and because it sep-
arates the large-repository spanning work from that of the
client and server software, which can therefore be existing
off-the-shelf products such as the Zebra.

However, much work remains to be done. Perhaps the
largest area of difficulty is that of merging results from mul-
tiple sources into a single result set, as each peer must do
that forwards a query to more than one neighbour. Such
merging should eliminate duplicate results, and canoni-
calise relevance scores.

The protocol to be used within the peer-to-peer proxy has
been designed but not yet deployed in a large network. As a
part of the ALVIS research, we intend to run simulations of
large networks (tens of thousands of nodes), with each sim-
ulation using a different set of parameters to control query-
routing behaviour - for example, initial TTL, likelihood of
forwarding a query to multiple neighbours rather than pick-
ing the single most promising one, frequency of “tracer bul-
let” queries, readiness to discard infrequently used peers
from the pool of neighbours. By comparing the quality of
search results obtained during runs of each candidate con-
figuration, these paramaters can be progressively refined to
yield the best possible performance.

We hope ultimately to see an extremely large network
of peers running in the real world, with thousands of insti-
tutions and individuals adding peers to the network to in-
crease the total size of the distributed repository available
to searching clients.

References
[1] Karl Aberer, Philippe Cudre-Mauroux, and Manfred

Hauswirth. Start making sense: The chatty web
approach for global semantic agreements. Techni-
cal report, Ecole Polytechnique Federale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland, 2003.

[2] Karl Aberer, Fabius Klemm, Martin Rajman, and Jie
Wu. An architecture for P2P information retrieval.
In 27th Annual International ACM SIGIR Conference
(SIGIR 2004), Workshop on Peer-to-Peer Information
Retrieval, Sheffield, UK, July 2004.

[3] Karl Aberer and Jie Wu. Towards a common frame-
work for peer-to-peer web retrieval. In Matthias Hem-
mje, editor, From Integrated Publication and Infor-

mations Systems to Virtual Information and Knowl-
edge Environments. Springer LNCS, EJN-Festschrift,
November 2004.

[4] ALVIS - superpeer semantic search engine. EC
FP6 Programme Project IST-1-002068-STP. http://
www.alvis.info/.

[5] SRW Editorial Board. CQL - common query lan-
guage, 2004. http://www.loc.gov/z3950/agency/zing/
cql/.

[6] SRW Editorial Board. SRW - search/retrieve web ser-
vice, 2004. http://www.loc.gov/z3950/agency/zing/
srw/.

[7] Wray L. Buntine and Michael P. Taylor. ALVIS: Su-
perpeer semantic search engine. In European Work-
shop on the Integration of Knowledge, Semantic and
Digital Media, Royal Statistical Society, London,
November 2004.

[8] Larry E. Dixson. YAZ++ enhancements coming soon.
http://www.indexdata.dk/pipermail/yazlist/2004-
March/000857.html.

[9] Patrick Kirk. Gnutella file sharing and distribution net-
work, 2003. http://rfc-gnutella.sourceforge.net/.

[10] Fabius Klemm, Anwitaman Datta, and Karl Aberer. A
query-adaptive partial distributed hash table for peer-
to-peer systems. In International Workshop on Peer-
to-Peer Computing and DataBases (P2P&DB 2004),
Crete, Greece, March 2004.

[11] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski,
Christoph Schmitz, Mario Schlosser, Ingo Brunkhorst,
and Alexander Loser. Super-peer-based routing and
clustering strategies for RDF-based peer-to-peer net-
works. In WWW2003, Budapest, Hungary, May 2003.

[12] Library of Congress. The Z39.50 maintenance
agency. Protocol overview web-page, 2005.
http://lcweb.loc.gov/z3950/agency/.

[13] Rob Sanderson. Record update. http://srw.cheshire3.
org/docs/update/.

[14] Mike Taylor. ZOOM: The Z39.50 object-orientation
model, 2001. http://zoom.z3950.org/.

[15] YAZ Proxy. Open source implementation of
a highly configurable Z30.50 and SRW/U proxy.
http://www.indexdata.dk/yazproxy/.

[16] Zebra. Open source text and XML indexer software
and Z39.50 server. http://www.indexdata.dk/zebra/.

5


