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Estimating the masses and centers of mass of extinct animals by
3-D mathematical slicing

Donald M. Henderson

Abstract.—A mathematical-computational method for determining the volume, mass, and center of
mass of any bilaterally symmetric organism is presented. Cavities within the body of an organism
such as lungs are easily accommodated by this method. Sagittal and frontal profiles, obtained from
tracings of 'fleshed-out’”” skeletal reconstructions, are used to provide limits for defining transverse
slices of the body. Any internal cavities are defined by their own sagittal and frontal profiles. The
computations consist of mathematically slicing the body and any cavities into independent sets of
transverse laminae and computing their masses, centroids, and moments with respect to the three
coordinate axes. Further calculations produce the masses and the (x,y,z) coordinates for the centers
of mass of the body, any cavities, and the body + cavities. Predicted body masses of large, extant
mammals (elephant, giraffe, hippopotamus, and rhinoceros) are in close agreement with actual
body masses. New, lower estimates for body masses of selected large dinosaurs, based on modern
skeletal reconstructions, are also presented, along with numerical estimates of their centers of mass.
This method is an improvement over earlier ones that relied on measuring displaced volumes of
water or sand by scale models to estimate the masses, and suspending models by threads to esti-

mate their centers of mass.
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Introduction

Zoologists and paleontologists are interest-
ed in knowing the ecological roles of the or-
ganisms that they study. Zoologists have the
luxury of observing their organisms directly,
while paleontologists have to find proxies for
inferring the habits of their long-extinct or-
ganisms. The adult body mass of an animal
determines, in large part, its ecological role,
and there is a large literature on the subject
(see Damuth and MacFadden 1990, and ref-
erences therein, for a comprehensive review).
Estimating the mass of an extinct animal will
give insights into how that animal functioned
as a living organism.

For biomechanical studies a simple scalar
body mass is of limited use. It says nothing
about how a three-dimensional collection of
muscles, bones, skin, and organs, being pulled
by gravity, pushed by moving air, or buoyed
up by water, reacts in a three-dimensional
world. Knowing the distribution of the body
mass of an organism extends our knowledge
from one dimension into the much richer,
three-dimensional world of forces, levers,
torques, and balance. The center of mass of an
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animal conveniently summarizes the distri-
bution of body mass and simplifies analysis.
The position of the center of mass of an or-
ganism has important implications in both
stable equilibrium situations such as standing
on two legs (Weishampel 1995), and unstable
equilibrium situations such as walking and
running (Gatesy and Biewener 1991) and fly-
ing (Bramwell and Whitfield 1974). Having an
estimate of the center of mass of an extinct an-
imal, combining it with inferred muscle and
bone mechanics and, in the case of terrestrial
tetrapods, trackway data, allows for a more
complete picture of how an extinct animal
could have moved and what it would have
been capable of.

One set of methods for determining the
mass of an extinct animal is based on esti-
mating the volume of the animal. A life recon-
struction is produced to provide a volume es-
timate, and an assumption of the bulk density
of the body tissues is made. The product of
this assumed density and the body volume
gives an estimate of the mass. Colbert (1962)
presented an updated form of this method,
which was first used by W. K. Gregory (1905)

0094-8373/99/2501-0006/$1.00
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to estimate the masses of large dinosaurs.
Both Colbert and Gregory used scale models
and estimated the volumes of their models by
measuring the displacement of some “fluid”’
by their models. Gregory used water as his
displacement material, while Colbert used
dry sand. Neither Gregory nor Colbert looked
at how the masses of their models were dis-
tributed; they simply measured the displace-
ments of whole models to get bulk mass esti-
mates.

An important paper analyzing the magni-
tudes and distributions of body masses of ex-
tinct vertebrates was published by R. McNeil
Alexander (1985). His method also relied on
measuring the amounts of water displaced by
scale models, but Alexander’s method im-
proved on the one outlined by Colbert. Alex-
ander viewed his models as being a sequence
of thick slices, and measured the volumes of
these body slices by incrementally immersing
the models in water and recording the volume
of fluid displaced by a slice and its axial po-
sition. Combining the volume data with the
position data and converting the volumes to
masses allowed Alexander to calculate not
only the total body mass, but also the distri-
bution of body mass. Noting that the center of
mass (CM) can be expected to lie somewhere
in the sagittal plane between the limb girdles,
Alexander visually estimated the position of
the CM while the model was suspended ver-
tically, in several orientations, and allowed to
reach its equilibrium position (method out-
lined in Alexander 1983). Unlike Colbert, Al-
exander took into account the effect of the
lungs on the position of the CM. Lungs rep-
resent an asymmetrically distributed region
of lower density that will have a small, but
measurable, effect on an animal’s CM and
mass.

This paper presents a method to compute
the volume (mass) of an animal, and extends
the methods of Alexander in order to locate
precisely the CM in three-dimensional space.
Instead of working with a physical three-di-
mensional model, the method works with a
mathematical one. It uses a computer to sub-
divide an abstract, mathematical volume and
perform the tedious calculations necessary to
compute and sum the volumes and moments

of many smaller subvolumes. Once the initial
data have been collected, this numerical meth-
od provides estimates of mass and the CM
quickly and easily. Although the focus of this
paper is on vertebrates, the method outlined
here can be applied to any bilaterally sym-
metric organism.

It should be noted that the numerical slicing
and weighing technique presented here was
anticipated in a simpler form by Bramwell and
Whitfield (1974). The present method is a
more mathematically sophisticated one that
overcomes several of the simplifying assump-
tions that Bramwell and Whitfield had to
make and permits a more detailed analysis of
mass distribution.

Method
Data Collection

The first stage is the collection of the sagittal
and frontal profile data, which come from out-
line drawings of lateral and dorsal views of a
skeletal reconstruction with the flesh outlines
(muscles and skin) included. The dorsal and
ventral, and left and right profile lines will be
treated as lines in two-dimensional coordinate
space. The x-axis is parallel to, or co-axial
with, the dorsal segments of the spinal col-
umn. The axis perpendicular to the x-axis, the
y, will represent the dorso-ventral dimension.
Perpendicular to the plane defined by the x
and y axes is the z-axis. Positive and negative
z-values refer to the right and left sides of the
body respectively.

Lines are drawn across both profiles such
that each line will cross top and bottom, or left
and right, edges of the outlines. Figure 1
shows the pattern of lines drawn across the
lateral and frontal profiles of Tyrannosaurus rex
(modified from Paul 1988: p. 341). The inter-
sections of the straight lines with the profile
edges define points, and these points can be
used to define an edge as a series of connected
points (“’connect-the-dots”).

The sagittal profile lies in the xy plane, and
the intersections of the straight lines with this
profile gives a series of (x,y) pairs. Profile seg-
ments that are strongly curved relative to oth-
er segments will require more points of inter-
section in order to record the form of the curve
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FIGURE 1.

Lateral (A) and frontal (B) profiles of Tyrannosaurus rex (after Paul 1988: p. 341) with slice traces overlying

the body outlines. The points of intersection of the slices with the profiles provide sets of coordinates in the xy and
xz planes. Combining the xy and xz data produces a series of ellipses that are three-dimensional, transverse slices

of the body.

more precisely than segments that are less
curved. The head and neck will usually re-
quire relatively closely spaced lines, while the
caudal regions can be sampled quite coarsely.
However, it was found that body forms gen-
erated from tracings with a more uniform
spacing between the slices looked much better.

The frontal profile lies in the x-z plane, and
lines that traverse this profile provide a series
of (x,z) pairs that give the dimensions of the
right and left sides of the body. Even though
vertebrates are bilaterally symmetric, recon-
structions are often slightly unbalanced. Re-
cording both left and right dimensions, and
then averaging them, smooths out any un-
evenness in the reconstructions.

The best method to capture the numerical
values for the sets of coordinates defining pro-

files is to use a digitizing tablet in conjunction
with a computer aided drafting package
(CAD) such as AutoCAD or paint program
like Canvas. With the profile drawings posi-
tioned on the digitizing tablet, the stylus of the
tablet is used to touch the body profiles where
they are crossed by transverse lines. Programs
like AutoCAD or Canvas can record the ver-
tical and horizontal coordinates returned by
the digitizing tablet and write the sets of co-
ordinate points as files for later use. The co-
ordinate values can be converted to full-scale
values by multiplying them by the scale used
in the original figure.

An alternative way to get the point coordi-
nates is to trace the outline drawings onto
graph paper with the animal’s long dimension
aligned with one of the graph paper axes. Nu-
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FIGURE 2. Configuration of a hypothetical m™ body
slab, possibly from a cervical segment. The ends are de-
fined by the m" and (m + 1)* tranverse slices. D,, V,,
L,, and R, are dorsal, ventral, left, and right points re-
spectively of the m™ slice.

merical values for the intersection points can
be determined from the graph paper axes, and
the numbers can be typed into a simple text
editing program to produce data files for later
use.

Data Organization

The sagittal xy-intercept data and the fron-
tal xz-intercept data are used to define the
semi-major and semi-minor radii of a series of
ellipses that represent a set of transverse slices

across the body. The bodies of most verte-
brates are deeper than they are wide, and the
semi-major axis is considered to be this deep-
er sagittal depth. Half the distance between
the dorsal and ventral intercepts of a slice pro-
vides a value for the semi-major radius. The
narrower left-right dimension is considered to
be the semi-minor axis, and the semi-minor
radius is half the distance between the right
and left intercept values. The semi-minor axis
intercepts the semi-major axis at the midpoint
of the line joining the dorsal and ventral in-
tercepts.

This set of transverse slices can be used to
divide the body into a series of slabs with el-
liptical cross sections and parallel or subpar-
allel ends. These slabs are defined by pairs of
adjacent elliptical slices. Figure 2 illustrates
the configuration of a hypothetical slab
formed from the m™ and (m + 1)* slices. Fig-
ure 3 shows the transverse slice data for the
Tyrannosaurus, measured in Figure 1, trans-
formed into a three-dimensional body form.
This body form is a hollow ““mesh’ of rect-
angular polygons. The vertices of the poly-
gons are points defining the edges of the slic-
es. These points have been inserted with a
constant angular spacing and lie in the plane
of each slice.

FIGURE 3. Three-dimensional reconstructed body form of Tyrannosaurus rex derived by mathematically combin-
ing and extending the two sets of 2-D data recorded from Figure 1. A representative body slab has been drawn
out to show that the body form can be viewed as a collection of independent disk-like units. This body form is
actually a hollow, elliptical shell, and the darker color of the cut surfaces is purely an illustrative aid. The lon-
gitudinal axis is 12 m long, the vertical axis is 4 m, and the short transverse axis is 2 m. Increments on all the

scale bars are 50 cm.
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FIGURE 4. Sagittal (A) and frontal (B) views of the sub-

divisions of the m™ slab of Figure 2 to produce subslabs

for use in computing mass and center of mass of the
slab.

Computations

Slab and Subslab Geometry.—The spatial res-
olution afforded by the body slabs is too
coarse for computations of body volumes and
dynamical properties. Precise determination
of the centroids and moments with respect to
the three coordinate axes requires that the
slabs be subdivided into thinner subslices.
The dorsal, ventral, left, and right dimensions
of these subslices are formed by computing
seven intermediate points between major
points to give eight subslabs. This subslicing
is shown in Figure 4. The x-axis and y-axis
separations of the dorsal points of the m™* and
(m + 1)* slices would be specified as follows:

1 D,
= — —_ ¥ 1
m N-1 ( n+1 [D rn) ( )

v,
where D, and D, are the dorsal x- and y-axis
coordinates and N is the number of required
subslices of the mt slab (N = 8 in the present

D
D

Y,

X

AD,
AD

Y,

example). The position of the dorsal point of
ntt subslab would be then given by

AD, D
AD D

Yy Y

d, ( 1)
=|n+ =
. 2

. @

mw mw

and n takes on the values from 0 to N — 1. The
1/2 term shifts the x and y positions to the
midpoint of the subslab. Similar expressions
are used to interpolate intermediate points for
the ventral, left, and right edges of slabslabs.

Center points are determined for each
subslice by treating the dorsal, ventral, left,
and right limits of a subslice as coordinates in
three-dimensional space. The vector form of
the midpoint formula is then used to compute
the centers of each slice using the dorsal and
ventral points. The center of the n'" subslice is
expressed as follows:

C,\' 1 d,\‘ X
¢, = E dy +|v, 3)
C’ n dZ n v" n

where ¢, d,, and v, are the coordinate triples
for the center, dorsal, and ventral points re-
spectively. The bilateral symmetry of verte-
brates leads to the z-term of the dorsal, center,
and ventral points being equal to zero, but for
later computations involving transverse quan-
tities it is necessary to carry the z-term.

These later computations require the semi-
major and semi-minor radii of subslices to be
treated as vectors in three-dimensional space.
These radial vectors can be derived by vector
subtraction of the center point of a subslice
from the dorsal and lefthand side points of the
subslice:

RR, [d, c,

RRy = dy C.‘/

RR z | _dz i Coln
. 1, c.
= ly 6 )
rrZ n _lZ H CZ H

where RR, and rr, are the semi-major and
semi-minor radii vectors respectively of the
nt subslice, and ¢,, d,, and I, are the center,
dorsal, and left points respectively. With the
two radii of a subslice in vector form it is now
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FIGURE 5. A, Lateral, oblique view of the n™ subslab
showing the vector representation of the semi-major,
RR, and RR,,,, and semi-minor, rr, and rr,.,, radii of the
ntand (n + 1)* subslices that bound the n' subslab. The
center points of the subslices are represented by ¢, and
¢,.1- The dashed ring indicates the position of the midsl-
ice between the two bounding slices. B, Sagittal view of
the 1" subslab showing the positions and directions of
points and vectors in the xy plane prior to rotation. The
poles to the subslices, Pole, and Pole,,, are derived by
computing the vector products of the semi-minor and
semi-major radii of a subslice. C, Dorsal, oblique view
of the n™ subslab after counterclockwise rotation to
align the midslice pole with the y-axis, and shifting the
subslab to have it centered on the origin. The n'" and (n
+ 1)% subslices now form the lower and upper surfaces
respectively of an elliptical cylinder, while the lateral
surface of this cylinder intersects the xz plane along the
line defined by the perimeter of midslice. Primed (')
quantities denote the rotated and translated quatities
from B.

possible to represent each subslice as a plane
in three dimensions. This is most concisely
done by determining a pole perpendicular to
the plane. This pole is simply the vector cross-
product of the semi-major and semi-minor ra-
dii vectors:

P, = rr, X RR, 5)

n

This geometry for a hypothetical subslab is
shown in Figure 5A.

Volume Calculations.—Knowing the center
points of the subslices and the poles to the

planes that contain the subslices will allow the
derivation of simple linear equations that can
be used to mathematically describe the planes.
With the equations of the planes (subslices)
known it is possible to compute the volumes
of subslabs bounded by consecutive pairs of
subslices.

The varying orientation of adjacent slices
relative to one another, and the fact that slices
will rarely be parallel to the yz-plane, make
the computations complicated, but this com-
plexity can be reduced by reorienting the
subslices that bound subslabs. The method
used here determines the center and perpen-
dicular pole to a plane that is midway between
two bounding planes. Definition of this mid-
plane, in lateral view, is seen in Figure 5B. The
midplane pole, and the poles of the associated
bounding planes, are then rotated counter-
clockwise until the midplane pole is aligned
with the y-axis. The centers of all three planes
are then translated until the midplane center
is at the origin of the coordinate system. In ad-
dition to rotating the poles and translating the
centers of the three slices, their associated dor-
sal, ventral, and lateral points are rotated and
translated as well. The effects of these rota-
tions and translations on the two bounding
subslices and their mutual midslice are shown
in Figure 5C. The midslice now lies in the xz
plane, centered on the origin, and the subslice
with the low subscript, n, is below the mid-
plane, while the subslice with the higher sub-
script, n + 1, lies above the midplane. The dor-
sal points of all three slices have been repo-
sitioned to lie on, or perpendicular to, the neg-
ative x-axis, while their ventral points now lie
in the region around the positive x-axis. The
lower and upper slices form the bottom and
top bounding surfaces of a cylinder with ellip-
tical cross section.

The volume of the n'" subslab can be com-
puted by evaluating a double integral over the
elliptical region, R, defined by the perimeter
of the midplane slice in the xz plane:

'Uolumeﬂ = f f {f[gp(x/ Z) - fbollom(x/ Z)} dx dz
R

(6)

where f,,,,(x,2) and f,,,(x,z) are the equations
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FIGURE 6. A, Plan view of the left side of the midslice
in the xz plane. The first trapezoidal subregion of the
midslice is colored gray. Linear functions I, and I, de-
scribe the upper and lower bounds of the trapezoid as
functions of z. B, Oblique view of the subvolume asso-
ciated with the region of integration defined in part A.

of the bottom and top bounding planes re-
spectively and have the form

flx,z) =c+ax + bz )

where ¢, g, and b are coefficients determined
from the pole and center of the each subslice
using standard methods from linear algebra
that relate vectors and points in planes (O'Neil
1983: pp. 594-599).

The vertices that were generated to define
the perimeter points of the model slices pro-
vide a convenient set of points for use in sub-
dividing the midslice into trapezoidal subre-
gions to allow the integration to be performed.
The subdivisions of the left-hand side of the
midslice are shown in Figure 6A, and the vol-
ume defined by the bounding planes and the
first trapezoidal region are shown in Figure
6B. The integral to compute this volume is

trap-volume

21 h(z)
= f f {ffop(xr z) — flzoh‘om(xl z)} dx dz
z=zg Jx=ly(z)
(8)

where I,(z) and I,(z) are equations of the form
I(z) = mz + b that describe the upper and low-
er boundaries of the trapezoidal region of in-
tegration. Bilateral symmetry means that only
the volumes defined by trapezoidal subre-
gions on one side of the sagittal plane of a sub-
slab need to be done by integration, and dou-
bling the sum of their volumes gives the total
volume n* subslab:

V/4-1

subslab_volume, = 2 2 trap_volume, (9)
=0

where V is the number of vertices, a multiple
of 4, used to define the midslice perimeter. The
volume of the m™ slab is just the sum of the
volumes of the N subslabs:

N-1
slab-volume,, = E subslab-volume,,
n=0

(10)

The total volume of the body defined by the
sum of the slabs:

M-1
body-volume = 2 slab_volume

m=0

(11)

where M is the number of slices that the body
mesh was initial defined with.

Center of Mass Calculations.—To determine
the center of mass (CM) of a subslab it is only
necessary to determine the centroid of the
quadrilateral defined by the sagittal profile of
the subslab, and to convert this centroid into
a CM by multiplying it by the mass of the sub-
slab. The bilateral symmetry of vertebrates
means that the CM has no lateral component
and lies completely within this sagittal plane.

The first step to compute the centroid (Cd)
is to get the area of the region. This can be
done quickly and simply by breaking the re-
gion into three smaller subregions: a top tri-
angle, a middle, rectangular region, and a bot-
tom triangle. These subregions of the sagittal
quadrilateral are shown in Figure 7. The top
and bottom sides of the quadrilateral can be
expressed as simple linear functions in the xy
plane with the same y-intercepts and x-coef-
ficients that are associated with the bounding
planes. The top and bottoms lines are ex-
pressed as
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FIGURE 7. Sagittal plan view of the geometry of a hy-
pothetical subslab that has been rotated and translated
to the origin. The points Ay, Ay Biowow and B, are
used to approximate the sagittal area of the subslab. See
Center of Mass Calculation section in the text for the
derivations of the labeled regions.

ltop(x) =

= Coottom + uboh‘om.x

Cfop + utop'x lboh‘om(x)
(12)

where ¢, a5, Coortons aNd @y, are the coeffi-
cients from the equations defining the top and
bottom bounding slices of the current sub-
slice. The lefthand limits, A,,, and A,,,,, and
the righthand limits, B,,, and By, of the top
and bottom triangles are computed using the

l,,, and I, functions:
Ay = L (d-mid.)
B, = lip(v-mid.) 13)
Apottons = Lyotton (d-mid.,)
Biorton = Lyottom (V-mid..). (14)

These limits are used to compute the areas of
the top and bottom triangles and the middle
rectangle:

1
E(v.midx — d-mid,)

ureu:‘opA =
X IBfop - A[opl (15)
1 . .
ureubattanm = E(v-mldx - d-mldx)
X IBboHam - Abaﬁoml (16)
‘Zre‘zrectangle = (U-ml.dx - d-nlidx)
X (min(Ampr B[op)
- maX(AboHam/ Bboh‘om)) (17)

where “min’” and ““max” in the rectangle area
expression are functions that return the min-

imum and maximum of a pair of numbers
supplied to them.

To compute the Cd of a triangular region
two integrations are required—one for the x-
coordinate and one for the y-coordinate. Using
the top triangle as an example, the x-position
of the top triangle Cd is given by

Cd:“fop;\
1

area,,,,

v-mid,
X J X - {lfop(x) - min(A!op’ B[op)} dx'

x=d._mid

(18)

The y-position uses one of two expressions de-
pending on which way the bounding lines
limit points is the largest. If B,,, is larger than
A,,, then the y-position of the triangle Cd is
given by

1
Cd{,},A =
urea:‘opA
Biop —
X f y-{v_mid,\. - u} dy.
- a
Yy=Atop n
19)
If A,,, is larger than B,,, then the y-position is
given by
1
Cd}t/op;\ =
areatapA
Atop y—c
X Yy 1= — d-mid, | dy.
_ a
Y=Biop i

(20)

A similar set of integrations is done to esti-
mate the Cd of the bottom triangle. The Cd of
the middle rectangle, because of the way the
midslice was defined and then translated to
the origin, will lie at the origin so no extra
computations are needed.

To find the Cd of the whole quadrilateral re-
gion it is necessary to determine how the Cds
of the two triangles displace the Cd of the
middle rectangle. The x- and y-positions of the
quadrilateral Cd are given by
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!

X

¥

Cd

quad

X X

Y

ureatapA + arearectangle + aAreyottoma

area,,,, - Cd + aredyoyoms - Cd

I/ topA

bottomA

(21)

Cd,, .. is the pair of numbers representing
the centroid of the rotated and translated
subslice. To get the correct (original) position
for the centroid the two numbers need to be
adjusted to undo the effects of rotation and
translation. This correction is done by the fol-
lowing matrix expression:

cal® _ c?s(—da) —sin(— ) .Cd x
Yy quad Sln(_d)) COS(~¢) Y quad
+ & 22)
cy mid

where ¢ is the the angle by which the pole to
the midplane was originally rotated by, and c,
and ¢, are the original coordinates of the cen-
ter of the associated midslice prior to trans-
lation.

The moments of the m™ slab with respect to
the x- and y-axes are simply the sums of the
moments of the subslabs:

slab_mom x
y m
N-1 x
= > subslab_volume, - | Cd . (23)
n=0 y quad »

The CM of the entire body (in the sagittal
plane) is determined by dividing the sum of
the moments of all the body slabs by the the
sum of the masses of all the slabs:

M—1

x
E slab_mom
m=0 W

= meT (24)
E slab_mass,,

m=0

body_cM|”

where M is the number of slices used to define
the body volume. The masses of the slabs are
equivalent to the slab volumes mulitiplied by
some density.

A set of calculations, identical to those out-

lined above, are also applied to the slice data
for lungs and other body cavities. The CMs for
the body and any cavities can be combined to
give a CM for the body + cavity(cavities). As
a simple example, the CM of a body + lung
arrangement would be expressed as

body-CM * -body-mass + lung_.CM * -lung.mass
Y Y
body-mass + lung_mass

(25)

In all these expressions for CM the z-term has
been left out, and is assumed to be zero. The
terms body-mass and lung_mass are just the vol-
umes multiplied by some density. For the
lung_mass the density will be less than the
body density because it is mostly empty
space.

Accuracy of Volume Estimates.—The accuracy
of estimating a volume by slicing was tested
by computing the volume of a triaxial ellip-
soid with increasing numbers of slabs and in-
creasing numbers of perimeter points to de-
fine the slabs. The slab count ranged from 2 to
32, while the number of points per slice varied
from 4 to 32. Figure 8 shows the rapid im-
provement in the visual appearance of the el-
lipsoid as the numbers of slabs and points is
increased. Table 1 shows the equally rapid im-
provement of the volume estimates with in-
creasing numbers of slabs and points. The ac-
curacy of the volume estimate, the fraction of
the actual ellipsoid volume that the estimate
represents was expressed as

volume,,,

(4w /3)abc (26)

where volume,,,,, is the ellipsoid volume esti-
mated with m slabs and n points per slab, and
(47 /3)abc is the exact volume of a triaxial el-
lipsoid with three different radii 4, b, and c.
The region on the top right of Table 1 repre-
sents volume estimates that are equal to
96.3%, or more, of the true volume of the el-
lipsoid. This flat region is reached when 16
slabs defined by 16 points are used to estimate
the volume. The shape defined by 16 slabs and
16 points is also a good visual approximation
of a triaxial ellipsoid. Increasing the number
of slices or points beyond 16 gives only minor
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FIGURE 8. Graphical illustration of the improving vi-
sual representation of a triaxial ellipsoid when increas-
ing numbers of slabs (slices) and points are used to de-
fine the ellipsoid. Lengths of the three radii of the ellip-
soid area = 1, b = 1.6, ¢ = 2.4. The volume estimates
associated with each ellipsoid are presented in Table 1.

improvements in the accuracy of the volume
estimate and appearance of the elllipsoid. In-
spection of Table 1 shows that the volume es-
timates improve slightly faster with increas-
ing numbers of points than with increasing
numbers of slabs. This example gives an idea
of how many slices would be needed to get a
satisfactory quantitative and visual represen-
tation of a body form.

Body Length Estimates.—The lengths of the
body models were determined by summing
the distances between the center points of ad-
jacent slabs. To make the comparisons of di-
nosaur body mass estimates from different
studies simpler it was felt that estimates of
body lengths for all the dinosaurs should be
quoted along with all the mass estimates.
Length estimates for the animals studied by
Alexander were made from the drawings of
Alexander (1985: Fig. 1). The straight-line dis-
tance from the tip of the snout to the tip of the
tail of each animal was multiplied by the scale
factor associated with each drawing. Colbert
(1962) did not provide the total body lengths
of his models. He did, however, supply model

TaBLE 1. Improving estimates for the volume of a tri-
axial ellipsoid with increasing numbers of slabs and/or
numbers of points per slab. Estimates are expressed as
percentages of the true volume.

Fraction of true volume (%)

No. of slabs
32 633 89.0 967 988
16 63.0 886 963 984
8 61.9 871 947  96.6
4 57.6 81.0 88.1 89.9
2 42.6 59.8 65.0 66.4
No. of points per slab 4 8 16 32

and actual hip heights. Estimates of the life
sizes of the taxa used by Colbert were made
with the following two assumptions: that the
models used by Alexander and Colbert were
of roughly the same shape and posture, and
that the skeletal hip height quoted by Colbert
was measured from the sole of the hind foot
to the crest of the ilium. A similar hip height
was estimated from Figure 1 of Alexander
(1985), and a simple ratio expression was used
to estimate the body lengths associated with
the Colbert weight data:

total length e,

total length 4, anger
= X0t vy height cypon-
hip‘hEightAlexmxder p &t coter

27)

Materials
Living Taxa

To test the predictions of the computational
methods presented in this paper four large,
living animals were chosen as test subjects: an
elephant (Loxodonta a. africana), a giraffe (Gir-
affa camelopardalis), a hippopotamus (Hippopot-
amus amphibius), and a rhinoceros (Ceratother-
ium simum). The body forms and dimensions
were taken from the illustrations in Kingdon
(1997). The body density used for these four
mammals was 1000 kg/m?. The same density
was also used for the horns of the rhinoceros,
but the density of the elephant tusks was set
to that of dentine (2000 kg / m?) (Behrensmeyer
1990).

Extinct Taxa

The five genera used by Alexander (1985)—
Tyrannosaurus, Stegosaurus, Iguandon, Diplodo-
cus, and Triceratops—were also used in the
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present study, the only difference being the
use of more recent reconstructions for the
body shapes and postures. A uniform body
density of 1000 kg/m? was used to convert the
dinosaur volume estimates to mass estimates.
This value was chosen partly to simplify com-
parisons of body mass with those of Alexan-
der, and because it required the fewest as-
sumptions about the variation of density with-
in the bodies of the animals.

Two forms of Tyrannosaurus rex were mod-
eled. One, with a very rotund thoracic area,
was taken from the reconstruction by Paul
(1988: p. 341). It was felt that the chest area of
this Tyrannosaurus may be too bulky, so a sec-
ond, more slender form was also generated.
The only modifications made to produce this
slimmer one were reductions of the transverse
widths in the chest area. This slimmer form
corresponds, in part, with the Tyrannosaurus
model of Farlow et al. (1995), which also has a
narrower chest.

The reconstructed stegosaur is Stegosaurus
stenops and was taken from Paul (1987: Fig.
19), which provided lateral, dorsal, and ante-
rior views. The caudal spines were not used in
any of the body mass and moment calcula-
tions, but the masses of the dorsal plates were
used in the estimation of the body mass. The
dimensions of the plates used are those dis-
played in the figure, the thickness of the plates
was set to a constant 15 cm for all the plates,
and a density of 1000 kg/m? was assumed.

The reconstruction of Iguanodon bernisarten-
sis was based on the skeletal reconstruction
from Norman and Weishampel (1990: Fig.
25.22). The dimensions in the frontal plane
were based partly on the anterior views of
Iguanodon in a painting by Douglas Henderson
(in Czerkas and Olsen 1987, Vol. I: p. 9), and
partly on views of hadrosaurs such as that of
Paul (1987: Fig. 25).

The body form of Diplodocus is from a lateral
view reconstruction of McIntosh et al. (1997:

Fig. 20:11). The tranverse dimensions of this
animal model were based on consultations
with Paul Upchurch (personal communication
1997).

The sagittal profile of Triceratops was taken
from Dodson (1996: Fig. 3.7b), while a dorsal
view from Bakker (1987: Fig. 19) supplied the
frontal plane dimensions. The masses of the
brow horns and the parieto-squamosal frill
were used in the computations of the total
body mass. The frill thickness was set to a con-
stant 5 cm and a density of 1700 kg/m? (Beh-
rensmeyer 1990) was used for both the frill
and horn mass estimates.

In estimating the widths of the intergirdle
region of the herbivorous forms, it was as-
sumed that these animals would be quite
bulky due to the presence of the large diges-
tive tracts needed to process large quantities
of low-grade fodder (Farlow 1990). For the
widths of the neck region the herbivores were
given more slender necks, except for the neck
of Triceratops and the base of the neck of Di-
plodocus. The neck width of Tyrannosaurus was
kept large in light of the probable feeding
style of these animals—the head being pulled
back with the jaws clamped firmly onto the
prey, which would have required powerful
neck muscles.

The lung volumes used in the computations
were produced by reducing the lateral and
vertical dimensions of the body outline in the
thoracic area until the computed lung volume
was equal to 10% (*=0.5%) of the total body
volume. This value of 10% was chosen for con-
sistency with the assumed lung volume used
by Alexander (1985). The anterior extent of the
lungs was set to lie between, or slightly ante-
rior to, the shoulder girdles. The posterior ex-
tent of the lungs was adjusted to correspond
to the approximate position of the posterior-
most rib.

FIGURE 9.

—

Hlustrations of the body forms of four extant, large animals used to test the mass estimates computed

by the method outlined in the text. Actual and estimated weights are presented in Table 3. A, Hippopotamus (Hip-
popotaimus amphibius). B, African elephant (Loxodonta a. africana). C, Grass (White) Rhinoceros (Ceratotherium simunt).
D, Giraffe (Giraffa camelopardalis). Scale bar in all figures is 1 m with 20-cm divisions. Body shapes and dimensions

are from Kingdon (1997).
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TaBLE 2. Computed estimates of body element masses and total body masses for the mammal body forms shown

in Figure 9. All masses are in kilograms.

Total mass

Head + less 10% for

Taxon body mass Leg mass Arm mass Extra masses Total mass lung cavity
Elephant 4922 532 484 172* 7126 6413
Giraffe 638 79 185 - 1166 1049
Hippopotamus 1706 79 48 - 1960 1764
Rhinoceros 2704 203 203 25%* 3541 3187

* Elephant extras: 2 tusks = 50 kg each + trunk = 72 kg.
** Rhinoceros extras: 2 nose horns of 8 kg and 17 kg.

Results
Living Taxa

Figure 9 presents orthogonal views of the
four living, large animals that were used as
tests cases for the method presented here. The
components of the mass estimates—masses of
the head and body, legs, arms, and any ex-
tras—were all computed using the same
method implemented in the same program,
and these mass estimates are all presented in
Table 2.

Comparisons of the predicted masses with
the actual masses of the living animals are
presented in Table 3. The model and real re-
sults are very close. The giraffe and rhinoceros
model estimates differ by 11% from the values
listed for the living animals, the largest dif-
ferences of the four estimates, but the mass es-
timates of the living forms are quite variable.
The estimated total body masses for the living
animals supplied by Kingdon (1997) range
from 450 kg to 1180 kg for female giraffes with
a head height of 3.5-4.7 m, and from 2000 kg
to 3600 kg for rhinoceri with shoulder heights
of 1.7-1.85 m.

Extinct Taxa

Figure 10 presents the body and lung sur-
faces and the positions of the centers of mass
for the five genera of dinosaurs. Table 4 lists
the mass estimates of body components used
to arrive at the final estimates for total body
mass, and Table 5 compares the results of this
study with those of Alexander (1985) and Col-
bert (1962).

Using the more recent dinosaur reconstruc-
tions, the mass estimates for the animals either
range between the Alexander and Colbert es-
timates or are less than them. This pattern
holds even when the length, and associated
mass, of the stegosaur used by Alexander is
scaled up to match that of stegosaur of the pre-
sent study:

2825 kg = 2000 kg * (5.61 m/5 m)* (28)

where 2825 is the estimated body mass of the
model used by Alexander if its length was 5.61
m, 2000 kg is Alexander’s 1985 estimate for the
body mass of Stegosaurus, 5 m is the lengtkh of
his model animal, and 5.61 m is the length of
the Stegosaurus used in the present study. This
scaling relationship makes use of the fact that

TaBLE 3. Comparisons of computed mass estimates and observed mass for living examples of the taxa in Figure
9. Observed animal dimensions and masses from Kingdon (1997) except for hippopotamus. All lengths are in meters

and masses in kilograms.

Model dimensions and
masses

Observed dimensions and
masses

Head + Head +
Taxon body length  Shoulder height Total mass body length Shoulder height Total mass
Elephant 3.6 3.6 6413 4.0 4.0 6300
Giraffe 3.5 4.5* 1049 3.7 4.7* 1180
Hippopotamus 3.2 1.55 1764 3.2%% 1.55** 1618**
Rhinoceros 3.8 2.0 3187 3.5 1.85 3600

* Height of giraffe head above ground.

** Scaled weight estimate for an animal that is geometrically similar to a hippopotamus of length = 4.5 m and weight = 4500 kg (Hildebrand 1982:

p. 428).
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TabLE 4. Computed estimates of body element masses and total body masses for the dinosaur body forms shown

in Figure 10. All masses are in kilograms.

Head + Total mass less
Taxon body mass Leg mass Arm mass Extra masses Total mass lung cavity
Tyrannosaurus 6081 896 - - 7873 7224
Stegosaurus 1722 295 53 393* 2811 2530
Iguanodon 2657 523 187 - 4077 3790
Diplodocus 13,040 729 207 - 14,912 13,421
Triceratops 3528 294 88 83** 4375 3938
* Stegosaurus extras: 12 dorsal plates.
** Triceratops extras: 2 brow horns = 13 kg each + frill = 57 kg.

the change in mass is proportional to the cube
of the change in the linear dimension. This
scaling assumes that the two models are geo-
metrically similar.

The relatively small values for the estimated
masses of the dorsal plates of Stegosaurus, 393
kg, and the parietal-squamosal frill and brow
horns of the Triceratops, 83 kg, will have little
effect on the final result of the masses of the
animals. The masses of these extra bony ele-
ments are minor fractions of the total body
mass. The effects of including the plates of the
Stegosaurus, or the frill and horns of the Tri-
ceratops, would have had only minor effects on
the final results of the CM for these animals.

As argued semiquanitatively by Alexander
(1985), the inclusion of the lungs in estimates
of the CM has only a minor effect of the final
position of the CM. The magnitudes of the
shift in position of the CM when a lung cavity
is included in the analysis of body mass dis-
tribution are shown in Table 6.

The difference between the positions of the
CM for the ““thick” Tyrannosaurus and the
““thin’”’ one is also relatively minor—just over
half of one percent of the total body length
(0.06 m/10.7 m). The wider chest of the
“thick’” Tyrannosaurus gives this model an ex-

TABLE 5.

tra 684 kg of mass around the anterior portion
of the trunk. This added mass is approxi-
mately equal to 10% of the total body mass of
the ““thin” Tyrannosaurus, almost equal to the
mass excluded to make space for the lung cav-
ity. The shift in the position of the CM in these
two cases of changing mass, lung volume sub-
traction, and chest mass addition are also
roughly equal. Dorsal and lateral views of this
shift in CM position are presented in Figure
11.

Discussion

The assumption of a uniform density for the
models will have the greatest effect on the
mass and CM of the sauropod. The extensive-
ly modified cervical vertebrae and small head
of these animals suggest that minimization of
the mass projected forward from the shoulder
girdle was of paramount importance. Un-
doubtedly the bulk density of the neck region
was less than 1000 kg/m?. This reduction of
the neck density would have the effect of shift-
ing the CM posteriorly, making the possibility
that sauropods were able to rise up onto their
hind legs more likely (Bakker 1987). The meth-
od outlined in this paper would allow for the
inclusion of multiple cavities that may have

Comparison of various body mass estimates for large dinosaurs. Total body lengths quoted for the models

in this study are the sums of the center-to-center distances between transverse slices for a given model. Lengths

are in meters and masses are in kilograms.

This study Alexander 1985 Colbert 1962
Total body Total body Total body
length Body mass length Body mass length Body mass

Tyrannosaurus 10.7 7224 10.7 7400 10.9 6890
Tyrannosaurus* 10.7 7908

Stegosairus 5.61 2530 5.0 2000 5.3 1780
Iguanodon 7.85 3790 8.1 5400 7.7 4510
Diplodocus 224 13,421 20.3 18,500 18.0 10,560
Triceratops 6.22 3938 7.8 6100 5.5 8480

* Tyrannosaurus with wider chest area from Paul (1988: p. 341).
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FIGURE 10. Dorsal, lateral, and anterior views of dinosaur body forms, lung cavities, and associated centers of mass.
A, Tyrannosaurus rex, slender form (modified from Paul 1988). B, Stegosaurus stenops (from Paul 1987). C, Iguanodon
bernisartensis (from Norman and Weishampel 1990). D, Triceratops horridus (from Dodson 1996). E, Diplodocus (from
MclIntosh et al. 1997). Gray cylinders in anterior trunk regions are the hypothetical lung volumes associated with
each model. The center of mass of the lung + body is shown by the large black cross. Scale bars in all figures are

1 m with scale increments of 20 cm.

occupied the pleurocoels of the cervical and
dorsal vertebrae of sauropods. This approach
was not tried in this study in order to main-
tain consistency with earlier estimates of mass
and centers of mass.

The effects of changes in mass of models of
up to 10% were examined by subtracting mass
to approximate the presence of a lung cavity,
and increasing the width of the chest area of
the Tyrannosaurus. In all cases the magnitudes
of the shift in CM due to the mass changes
were relatively small. It appears that a recon-
structed body form would have to have a sub-
stantially different shape to have a significant
effect on the position of the CM. In contrast, a
change in the linear dimensions of a model
will have a significant effect on the body mass
estimate because of the cubic relationship be-
tween linear dimension and mass.

The masses of the legs and arms were not
included in the computations of CM. The view
was taken that limbs are functionally distinct

from the axial body (head, neck, trunk, and
tail). Large quadrupedal dinosaurs, with the
possible exception of diplodocid sauropods,
would have rarely lifted the anterior part of
the body off the substrate. The only truly bi-
pedal dinosaur of this study, Tyrannosaurus
rex, has such small forelimbs that the added
mass that they represent can be safely ig-
nored. The CMs experienced relatively small
changes in position due to the subtraction of
the lung cavity from the anterior part of the
trunk. The effect of adding the weight of the
forelimbs in a semibipedal form like Iguanodon
would have had a similarly minor effect on the
CM.

A serious hazard in estimating the masses
of large animals from scale models is the sen-
sitivity of the final mass estimate to the effects
of small errors in the dimensions of the model.
Colbert (1962) and Farlow et al. (1995) also
commented on the need for very accurate
modeling. Multiplying a dimension, incor-

TABLE 6. Positions of the centers of mass (CM) of body, lung, and body + lung in the sagittal plane (Z = 0). x =
values measured horizontally from the tip of the tail. y = values measured vertically from the soles of the feet. Last
column shows the displacement of the Body CM when the lungs are included. All units are in meters.

Body Lung Body + lung Displacement
Xp Ye Xi Yu Xpr, VoL Xp ~ Xp Yo " Ve

Tyrannosaurus 6.68 2.86 7.50 2.86 6.76 2.86 0.08 0.0
Tryannosaurus™ 6.77 2.87 7.50 2.86 6.82 2.87 0.05 0.0
Stegosaurus 3.33 1.51 3.7 1.42 3.36 1.50 0.03 —0.1
Iguanodon 4.59 191 5.16 1.87 4.65 1.91 0.06 0.0
Diplodocus 13.7 2.77 14.8 2.6 13.8 2.75 0.10 —0.2
Triceratops 3.25 1.49 3.63 1.47 3.28 1.49 0.03 0.0

* After Paul 1988.
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FIGURE 11.

Dorsal (A) and lateral (B) views of the two tyrannosaur body forms that were ““weighed’” and “/cen-

tered”” in this study. The upper body form in both images is similar to that of Farlow et al. (1995), while the lower
body form image, with the wider thoracic region, is based on the reconstruction of Paul (1988). The slight difference
in the positions of the center of mass of the “thick” and ‘‘thin”” body forms is visible as a modest antero-dorsal
displacement of the black cross in the thick form relative to that in the thin one. Quantitative results for this com-
parison are presented in Table 6. Scale bars in both figures are 1 m with 20-cm divisions.

rectly measured from a tracing, by a scaling
factor will magnify the error. This error gets
compounded if the dimension is squared
when calculating an area, or cubed to calcu-
late a volume. For the method outlined here
there are two situations where small errors in
data collection will lead to large variations in
the mass estimates.

The first error would arise during the gen-

eration of the body outlines. A slightly wider
or deeper neck will add mass to the front of
the animal. This extra mass will shift the CM
anteriorly. A similar, but opposite, effect will
occur if the dimensions of the tail are too
large. The addition of too many caudal or cer-
vical vertebrae will also shift the CM back-
ward or forward from its true position. This is
most problematic when estimating the CM of
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the larger sauropods, where a small mass, po-
sitioned far from the main body mass, can
have a strong effect on the longitudinal posi-
tion of the CM.

The second error would arise when the x, y,
and z coordinates are being collected. Care-
less positioning of a digitizing stylus, or poor
visual estimation of grid coordinate values
that lie between marked grid lines on graph
paper, will produce errors in dimensions.
Once the measurements were entered into the
computer, it was found that plotting the raw
profile data by a graphics program often al-
lowed for the visual detection of sloppy data
collection. The breaking of left-right symme-
try was also very apparent when frontal pro-
files were plotted, and this allowed for the
rapid identification of errors in measurement.

A final source of error is due to the present
method overestimating the amount of mass in
the pelvic region ventral to the acetabulum of
the saurischian dinosaurs—Tyrannosaurus and
the Diplodocus. The ventral dimensions of the
slices in this region are defined by the edges
of the ventralmost margins of the pubis and
ischium. While there would have been prom-
inent muscles originating from the proximal
regions of the pubis (e.g., pubo-ischio-femor-
alis externus) and ischium (e.g., adductors and
pubo-ischio-femoralis internus 3) (Romer
1923), presumably there was merely a sheet of
skin spanning the distal portions of the arc be-
tween the ventral edges of the pubis and is-
chium. To keep the computations of body vol-
ume simple it was assumed that body tissues
in this region filled the full area of the ellip-
tical slice. This overestimate of mass ventral to
the acetabulum is probably partly compensat-
ed for by an underestimate of the mass dor-
solateral to the acetabular rim and iliac crest.
Large muscles such as the ilio-femoralis and
ilio-fibularis were not explicitly included in
the definitions of the body contours. Fortu-
nately, the proximity of pelvic region to the
CM ensures that the moment arms associated
with any deficits or excesses of mass are small
enough to not have a significant effect on the
final position of the CM. The good agreement
between the CM positions of this study and
those of Alexander (1985) indicates that this
source of error is not significant.
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Conclusions

A numerical / computational method for the
collection of body form data and the deter-
mination of body mass parameters, as out-
lined in this paper, makes it relatively easy to
study the dynamics of a vertebrate body. With
the body data in electronic form, the testing of
hypotheses concerning the biomechanics of
both extinct and extant animals can be done
quickly and more easily. Volume-based mass
estimates can allow testing of body mass es-
timates made by other means such as the long-
bone dimension method of Anderson et al.
(1985).

The software used to convert digitized data
from computer-aided drafting (CAD) pack-
ages and paint programs such as CANVAS
into simple data files, to transform 2-D slice
data into 3-D meshes, and to compute vol-
umes and centers of mass of meshes is avail-
able free of charge. For instructions on obtain-
ing and using this software contact the author.

Acknowledgments

I thank M. Benton and G. Helffrich, both of
the Department of Earth Sciences, University
of Bristol, for early reviews, constructive crit-
icisms, and advice on the presentation of the
images. Many thanks to I. Stewart of Com-
puting Services, University of Bristol, for help
on technical matters related to PV-WAVE pro-
gramming and the generation of 3-D images.
The comments and suggestions of the two re-
viewers, S. C. Bennett and M. Carrano, greatly
improved the finished manuscript.

Literature Cited

Alexander, R. McN. 1983. Animal mechanics, 2d ed. Oxford
University Press, Oxford.

. 1985. Mechanics of posture and gait of some large di-
nosaurs. Zoological Journal of the Linnean Society 83:1-25.
Anderson, J. F, A. Hall-Martin, and D. A. Russell. 1985. Long-
bone circumference and weight in mammals, birds, and di-

nosaurs. Journal of Zoology 207:53-61.

Bakker, R. T. 1987. The return of the dancing dinosaurs. Pp. 39—
69 in S. J. Czerkas and E. C. Olsen, eds. Dinosaurs past and
present I. Natural History Museum of Los Angeles County,
Los Angeles.

Behrensmeyer, A. K. 1990. Bones. Pp. 232-235 in D. E. G. Briggs
and P. R. Crowther, eds. Paleobiology: a synthesis. Blackwell
Scientific, Oxford.

Bramwell, C. D., and G. R. Whitfield. 1974. Biomechanics of Pter-
anodon. Philosophical Transactions of the Royal Society of
London B 267:503-581.




106

Colbert, E. C. 1962. The weights of dinosaurs. American Mu-
seum Novitates 2076:1-16.

Czerkas, S. J., and E. C. Olsen, eds. 1987. Dinosaurs past and
present I and II. Natural History Museum of Los Angeles
County, Los Angeles.

Damuth, J., and B. J. MacFadden, eds. 1990. Body size in mam-
malian paleobiology: estimation and biological implications.
Cambridge University Press, Cambridge.

Dodson, P. 1996. The horned dinosaurs. Princeton University
Press, Princeton, N.J.

Farlow, J. O. 1990. Speculations about the diet and digestive
physiology of herbivorous dinosaurs. Paleobiology 13:60-72.

Farlow, J. O., M. B. Smith, and J. M. Robinson. 1995. Body mass,
bone “‘strength indicator’”’, and cursorial potential of Tyran-
nosaurus rex. Journal of Vertebrate Paleontology 15:713-725.

Gatesy, S. M., and A. A. Biewener. 1991. Bipedal locomotion: ef-
fects of speed, size and limb posture in birds and humans.
Journal of Zoology 224:127-147.

Gregory, W. K. 1905. The weight of the Brontosaurus. Science,
new series 22(566):572.

Hildebrand, M. 1982. Analysis of vertebrate structure, 2d ed.
Wiley, New York.

Kingdon, J. 1997. The Kingdon field guide to African mammals.
Academic Press, London.

DONALD M. HENDERSON

Mclntosh, J. S., M. K. Brett-Surman, and J. O. Farlow. 1997. Sau-
ropods. Pp. 264-290 in J. O. Farlow and M. K. Brett-Surman,
eds. The complete dinosaur. Indiana University Press, Bloom-
ington.

Norman, D. B., and D. B. Weishampel. 1990. Iguanodontidae and
related ornithopods. Pp. 510-533 in D. B. Weishampel, P. Dod-
son, and H. Osmolska, eds. The Dinosauria. University of Cal-
ifornia Press, Berkeley and Los Angeles.

O’Neil, P. V. 1983. Advanced engineering mathematics, 3d ed.
Wadsworth, Belmont, Calif.

Paul, G. S. 1987. The science and art of restoring the life ap-
pearance of dinosaurs and their relatives. Pp. 4-49 in S. J.
Czerkas and E. C. Olsen, eds. Dinosaurs past and present L.
Natural History Museum of Los Angeles County, Los Ange-
les.

. 1988. Predatory dinosaurs of the world. Simon and
Schuster, New York.

Romer, A. S. 1923. The pelvic musculature of saurischian di-
nosaurs. Bulletin of the American Museum of Natural History
48:605-617.

Weishampel, D. B. 1995. Fossils, function, and phylogeny. Pp.
34-54 in ]. Thomason, ed. Functional morphology in verte-
brate paleontology. Cambridge University Press, Cambridge.



