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1 STRUCTURED QUERIES

1 Structured Queries

1.1 CCL etc.

Candidate structured query language include simple, intuitive but less powerful languages such
CCL (the Common Command Language, ISO 8777) and the query languages used by popular
web-search engines such as google.com’s. However, these lack the rigour and expressiveness
that we would like the Alvis system to be able to support.

1.2 CQL

CQL stands for Common Query Language. It is a formal language for representing queries to
Information Retrieval systems such as as web indexes, bibliographic catalogues and museum
collection information. It is being developed by the Z39.50 Maintenance Agency as part of its
ZING initiative (“Z39.50-International: Next Generation”).

The interesting part of the CQL language in this context are its boolean operators and
index relations. These features decompose nicely into set algebraic features.

1.2.1 CQL boolean operators

Queries may be joined together using the four boolean operators, and, or, not and prox.

and set intersection, both terms must ocurr in a record, like dinosaur and reptile

or set union, only one of the terms must ocurr in a record, like dinosaur or reptile

not in CQL is a boolean operator, really ANDNOT, like dinosaur not reptile. The lan-
guage is defined this way in order to prevent the formulation of set complementation
queries that many engines cannot execute efficiently, like not reptile. However, for
algebraic purposes, we can consider CQL to support unary negation, expressed as a
universal search combined with an ANDNOT.

prox this is a special kind of AND which requires its operands to occur close to each other,
like dinosaur prox reptile. This finds any record containing the string dinosaur

reptile or the string reptile dinosaur.

In the general case, the proximity operator’s semantics are affected by four parameters,
which are expressed in the general form

prox/distance RELATION DISTANCE/unit=UNIT/(ordered|unordered)

In detail,

relation indicates whether the operands should be separated by an exact distance, a distance
greater than or equal to that specified, etc. It defaults to <= if not specified explicitly.

distance specifies the number of units (words, sentences, etc.) that may separate the operands,
with zero indicating the same unit and one indicating adjacent units. The default is 1 if
the unit is word, 0 otherwise.

unit specifies whether the proximity condition is about how many words, sentences, para-
graphs or elements separate the operands. It defaults to word.
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2 QUERY ROUTING 1.3 CQL Parsers

ordering may be ordered to specify that the operands must occur in the record in the same
order as they do in the query, or unordered if they may occur in either order (which is
the default).

Some examples on these boolean operators are quite in order to illustrate their behaviour:
foo prox bar The words foo and bar immediately adjacent to each other, in either order.
foo prox///sentence bar The words foo and bar ocurring anywhere in the same sen-

tence. (Recall that the default distance is zero when the unit is not word.)
foo prox//3/element bar The words must occur within three elements of each other: for

example, if a record contains a list of authors, and author number 4 contains foo and author
number 7 contains bar then this search will find that record.

foo prox/=/2/paragraph bar The words must appear exactly two paragraphs apart: it
is not good enough for them to appear in the same paragraph or in adjacent paragraphs.

foo prox/>/4/word/ordered bar Finds records in which the words appear, with foo first,
followed more than four words later by bar, in that order.

1.3 CQL Parsers

One of the attractions of CQL is that open source CQL parsers are available in several lan-
guages, including C, Java and Python.

2 Query routing

Distributed hash tables (DHTs) and vector space-based similarity measures are not the only
solutions to the problem of finding a peer that holds good documents in relation to a query,
and retrieving the hit set of documents from the peer network.

Here we propose a query routing approach that directs queries to peers that are likely to
contain relevant response documents. Essentially, we propose to store query routing infor-
mation, not document indexes, either in a network global Distributed Query Routing Table
(DQRT), or more lightweight, in Local Query Routing Tables (LQRTs).

2.1 Distributed Hash Tables

Distributed hash tables are by definition a way to distribute some part of the content of
documents across the P2P network, thus making it feasible that queries ask the peer network
about documents.

The essential idea of DHTs is that peer-IDs and data-IDs can be mapped to the same
space, usually by a checksum algorithm like MD5. There must be some notion of ’distance’
between the thing you want to find, and the place where it is stored - whether the thing being
sought is the document itself or a proxy or digest containting information about where to find
the document.

DHTs are usually about locating one thing, namely a document with a given key.
One assumption of DHT based querying is that there is a common model of what doc-

uments look like, and which things - or features of documents - are deemed important and
therefore distributed.

In many cases (e.g. in Gnutella), the name of the document file is the only feature which is
distributed - an approach which clearly does not suffice in an distributed information retrieval
system.
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2 QUERY ROUTING 2.2 Local indexing resources

Alvis must do better to support more complex features or queries in the network: given a
query, it must find a set of documents satisfying the query, and it must rank them over all hit
sets from all peers contacted.

The problem is that the key of the document will not help at all, because it can not be
constructed from the query. That’s where the train jumps off the rails using out-of-the-box
DHTs.

Likewise, the hash key of a query (interpreted as a small document) does not relate to the
hash key of the atomic parts of the documents. The network can not make an association
between query and document this way either.

As far as I see, it is only possible and interesting to give the atomic parts of queries a key,
that is, the ’terms’ of CQL, or the ’words’ of ’bag-of-word’ queries, and to match parts of
queries with documents that might satisfy them.

Thus, the best a DHT based approach can do is to build a global distributed inverse index
over document terms, split a query into its atomic parts, use the keys of the atoms to identify
the peers which do know about documents containing this atomic part, using the distributed
inverted indexes.

Then, having several lists of all documents satisfying some atomic part, the requesting peer
has to compute the hit set list. Finally, a network-global document retrieval of all documents
in the hit set must be made to merge and rank.

This just will not fly: our Zebra machine can search 20 million indexed documents with
boolean, structured queries in less than one second of search time, only because there are
carefully laid out indexes on the disk, and partially in memory. Searching 20 million DHT
inverse indexed documents - taking into account network latency just to look up indexes - is
just not feasible within hours or days of search time.

Global distributed inverted indexes over document terms are simply not feasible. Period.
Another assumption with regular DHTs is that parts of the documents are legally dis-

tributable across the peer network (and maybe even legally replicated).
All these assumptions are not necessarily met in the use case ’Digital Library System’, and

an alternative to DHTs might be necessary.

2.2 Local indexing resources

A better approach is to forward queries to peers, and let the peers use their own, local and
fast indexing facilities to boil the queries down to some small hit set. Finally, only the most
relevant parts of the hit set are shipped to the querying peer - which will be merging the
partial, short hit sets to a pseudo-global hit set.

This way, network latency is saved, since no peer network-global inverted document term
indexes have to be updated and maintained.

The question is simply how to make sure that all relevant peers have been queried? The
short answer is: there can be no such guarantee in large, non-trivial networks. However,
techniques can be used to ensure that it is increasingly probable that an increasingly large
proportion of relevant peers receive the query.

2.3 Query flooding

The simplest approach is to flood the network with a given query, allowing each peer to see
and answer the query, if it holds relevant documents. This approach does not scale well with
the number of peers, and will soon break down.
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2 QUERY ROUTING 2.4 Distributed Query Routing Table

Or, one could only flood a local neighborhood of a given peer, which scales well. The
disadvantage is that the query does not reach all nodes, and might remain unanswered by the
best possible peer. Local flooding does not make is probable that relevant peers are queried.

2.4 Distributed Query Routing Table

Having given up total assurance that we can get the ’true’ hit set to a query in a peer network,
the next best is a probability assurance that we have at least hit the most important peers in
relation to a query.

For this, we need query routing tables in peer-to-peer networks. One can balance between
the advantages of locality and total flooding by keeping routing information for queries. This
is ideally done such that a path a query takes to some peers scales like r log(n), where r is the
number of wanted parallel peer hits of a query, and n is the peer count of the network. Then
r is set high enough to satisfy the probability that relevant peers have been hit by the query,
but low enough to prevent swamping of the network.

One could turn the DHT approach around, assuming that the only thing all peers have
in common is the ability to understand a particular query syntax or form, and distribute key
features of successfully answered queries over the network. This distributed table over parts
of queries forms a Distributed Query Routing Table (DQRT), assuring that queries hit - with
high probability - the peers that can answer them sucessfully.

2.5 Local Query Routing Table

One could even go one step further, and not address the global properties of such a query
routing approach, but rely on good local query routing properties only. This way, one has not
to impose the burden on the network to maintain a globally distributed structure.

The price to pay for only applying Local Query Routing Tables (LQRT) is of course that
there is no guarantee that a query will hit the globally best suited peer to retrive the document.
However, if constructed properly, it will hit a set of good peers holding documents of sufficent
relevance to the query.

2.6 Adaptive query routing table update

Our proposal is that the DQRT or LQRT is built on the fly using the information which under
all circumstances has to be passed in the network: the queries and query responses.

It is assumed that the query model has atomic parts, which can be used for index infor-
mation. In the case of ’bag-of-word’ queries, these are the individual words, and in the case
of structured queries like CQL, these are the terms of the queries.

It is not assumed that the queries and the documents live in the same vector-space, nor
that all the documents are following the same document model, or are indexed using the same
ontologies.

In the case of LQRTs, the best a new peer can do is to forward a query to all its known
neighbors - hopefully soon hitting a peer which has already a well established query routing
table, and can do better than broadcasting. It might also choose to send queries which it does
not know how to route to a random selection of its known neighbors. The allowed hop count
of the forwarded query is decreased to avoid infinite message streams roaming the network.

As soon as a query has been answered, the reply is routed back along the same path, and
any peer on the path can update its LQRT according to the atomic parts of the query, and the
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2 QUERY ROUTING 2.7 Properties of query trickling

information contained in the hit set. One can choose to add the address of the originator of
the hit set to the LQRT, or one can choose to update the entry of the nearest peer from which
the hit set had been passed only. These varying strategies to progressive LQRT refinement
allow the query-trickling approach to be tuned in different ways, and the resulting networks
measured for performance to determine optimum values.

The next time a query with a given atomic part has to be routed through a peer that has
previous seen this atom, the LQRT shows the best direction to try. Probably there should be
some occasional randomness in query forwarding to make sure that yet unknown parts of the
network are queried from time to time.

In the case of DQRTs, the global distributed routing table is updated by each originator of a
query response (in form of a hit set, that is). Then the hit set may be returned immediately to
the querying peer - there is no need to traverse the same path back. The DQRT is implemented
analogously as DHTs, using a ring structure, an XOR tree structure, or whatever works.

2.7 Properties of query trickling

Local data The key property of the LQRT model is that all knowledge is local: documents
in the repository, how they’re indexed, host tables, routing tables, ontologies, etc. The
only global structure in DQRTs are the distributed indexes over the atomic parts of the
queries.

Index size The DQRT indexes only the queries sucessfully answered, not the entire space
of existing documents as in DHTs. This makes the global index structures much more
lightweight.

Local policies In the case of LQRTs, individual peers can and should make their own policy
about whether to fan queries broadly over short distances or narrowly over long distances;
send randomly, or use local routing tables, etc.

User driven Query routing tables are only based on queries issued by users, that is, they are
adaptively refined according to the use pattern of the network. In the case of LQRTs,
each peer’s ability to route queries specializes according to local use patterns.

Query type Works for ’bag of word’ queries as well as structured queries. Even different
types of structured queries can be supported in the network: the only thing needed in
common is consensus on what the atomic parts of queries are.

Legal issues Both DQRTs and LQRTs work for documents that may not be indexed over
the network due to IPR or other legal issues.

Any Document There is no assumption about type or structure of documents, nor of mime
type, character encoding or binary form. Any type of document repository is allowed to
enter the peer network as long as it understands some of the query types in the system.

Network traffic Less network traffic for maintenance of global structures than using DHTs,
since the indexing structure on DQRTs are smaller (due to the fact that queries con-
tain less atomic parts than documents, and that DQRTs are built according to usage
patterns.).
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A WEB LINKS

Mixing It is possible to mix an overlay network of DQRT peers with ordinary LQRT peers in
one and the same peer network. Any peer can decide by itself if it wants to be a DQRT
or a LQRT peer. A LQRT peer routes a query according to its local knowledge, and
eventually it will hit a DQRT peer which makes a global lookup and routes it directly
to the right set of peers to answer the query. The answer is then either routed locally
(backtracking) or globally (direct contact), according to which types of peers it went
through.

Guarantees Neither LQRTs nor DQRTs guarantee that the best document to a query is
found and included in the hit set. They give a good document hit set with high proba-
bility when the query routing tables stabilize. But a new query might consist of atomic
parts that have yet not been indexed properly.

Replication Replication of documents can be allowed on a peer to peer basis. Dead peers
which do not allow replication of their content can not be asked to send documents.
On the other hand, peers allowing document replication will add failure-resilience to the
network.

A Web links

A.1 Information Retrieval Protocols

ZING: http://www.loc.gov/z3950/agency/zing/

SRW: http://www.loc.gov/z3950/agency/zing/srw/

SRW: http://www.loc.gov/z3950/agency/zing/srw/spec-index.html

Z39.50: http://lcweb.loc.gov/z3950/agency/

Z39.50: http://lcweb.loc.gov/z3950/agency/document.html

Z39.50: http://www.niso.org/standards/standard detail.cfm?std id=465

A.2 Structured Queries

CQL: http://zing.z3950.org/cql/intro.html

CQL: http://www.loc.gov/z3950/agency/zing/cql/

CQL: http://www.loc.gov/z3950/agency/zing/cql/sample-queries.html

A.3 Metadata

DC: http://dublincore.org/

DC: http://dublincore.org/documents/dcmi-terms/
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