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Abstract

The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these
necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However,
such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This
cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds
have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa.
We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of
CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus
individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to
disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our
most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of
the turkey’s zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an
intervertebral joint of a turkey raises neutral posture by 15u. If this were also true of sauropods, the true neutral pose of the
neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11%
more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary,
including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than
previously recognised.
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Introduction

Historical background
Sauropod dinosaurs are notable both for their very long necks

[1] and their very large body sizes [2] (Figure 1). They were, by an

order of magnitude, the heaviest terrestrial animals that have ever

existed [3]. An extensive review of sauropod palaeobiology [4]

found that the long necks of sauropods were the key factor in the

evolution of their large size.

Ever since the sauropod body shape has been understood, the

posture and flexibility of their necks has been of interest. Initially,

the long neck was assumed to be ‘‘swanlike’’ and flexible [5–7],

and habitually held high above the level of the torso. Elevated

posture was depicted in most (though not all) life restorations of

sauropods, including the classic works of Knight [8], Zallinger [9]

and Burian [10], and continued to dominate the popular

perception of sauropods through books such as The Dinosaur

Heresies [11] and films such as Jurassic Park [12].

This changed in 1999, with the work of Stevens and Parrish

[13]. In a short paper, Martin had proposed, based on his work on

mounting the skeleton of the Middle Jurassic sauropod Cetiosaurus,

that it was constrained to a relatively low, horizontal neck posture,

and limited in flexibility [14]. Stevens and Parrish extended this

idea to the better known Late Jurassic sauropods Apatosaurus and

Diplodocus, and modelled the intervertebral articulations using a

computer program of their own devising named DinoMorph.

They concluded that Apatosaurus and Diplodocus, and by extension

other sauropods, were adapted to ‘‘ground feeding or low

browsing’’ and stated that ‘‘Diplodocus was barely able to elevate

its head above the height of its back’’. The horizontal neck

postures advocated in this widely publicised paper were quickly

adopted as a new orthodoxy, and were reflected in the BBC

television documentary Walking With Dinosaurs [15] and a special

exhibition at the American Museum of Natural History. Stevens

[16] subsequently published a high-level description of the

DinoMorph software, and Stevens and Parrish [17,18] elaborated

their earlier work with more detailed models.

Although several subsequent publications have provided

evidence for a habitually raised neck posture [19–21], the only

direct response to the work of Stevens and Parrish was that of

Upchurch [22], a half-page technical comment. As a result, certain

other flaws in this influential study have so far remained

unaddressed. This is unfortunate, as the digital modelling

approach pioneered by the DinoMorph project is potentially very

useful: as a result of the lack of serious critique, this approach has

not yet matured into the powerful and informative tool that it

should have become.
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The year after the DinoMorph work was published, Gregory

Paul ([23]: 92–93) pointed out the importance of cartilage in

understanding posture:

A problem with estimating neck posture is that it is highly

sensitive to the thickness of the cartilage separating the

vertebrae, especially the discs. The computer-generated

studies [of Stevens and Parrish] have assumed that the discs

separating the vertebrae were thin; but so closely spacing the

neck vertebrae jams the aft rim of one vertebra’s centrum

into the base of the rib of the following vertebra in some

sauropods. It is therefore probable that at least some

sauropods had thick intervertebral discs. The thicker the

discs were, the more upwardly flexed the neck was.

But this was rejected by Stevens and Parrish ([18]: 214), as

follows:

Paul (2000, 92) suggests that some sauropod necks had thick

intervertebral discs, effectively wedged between successive

centra, which induced an upward curve at their base.

Sauropod necks, however, were strongly opisthocoelous,

with central articulations that closely resemble the mamma-

lian opisthocoelous biomechanical design, consisting of

condyles that insert deeply in cotyles of matching curvature,

leaving little room for cartilage. In modern quadrupeds with

opisthocoelous cervicals, such as the horse, giraffe, and

rhino, the central condyle and cotyle are separated by only a

few millimeters. In avians, heterocoely is similarly associated

with very precisely matching articular facets and tight

intervertebral separations. Across a large range of extant

vertebrates, while substantial intervertebral separations are

associated with platycoelous vertebrae, vertebrae with

nonplanar central articular geometry generally have little

intervening cartilage (pers. obs.), and thus little room for

conjecture regarding their undeflected state.

A more general survey of difficulties with the DinoMorph work

will be published elsewhere (Taylor and Wedel in prep.) In this

contribution, we ignore problems such as the imperfect preserva-

tion of the sauropod vertebrae, and investigate in detail the

consequences of just one oversimplification: the neglect of articular

cartilage in the models used for this work. We show that this

significantly affects both the neutral posture recovered and the

range of motion found possible.

We examine preserved intervertebral gaps in sauropod necks

where CT scans are available, and compare with data obtained

from extant animals.

Basic vertebral architecture
The vertebrae of all tetrapods are broadly similar in construc-

tion, and those of sauropods and birds particularly resemble each

other as a consequence of their close evolutionary relationship

(Figure 2). The body of a vertebra is called the centrum, and is

usually a fairly simple shape resembling a cylinder. The anterior

and posterior facets (i.e., the front and back) of each centrum

Figure 2. Cervical vertebrae of a turkey and a sauropod.
Representative mid-cervical vertebrae from a turkey (top) and the
sauropod Giraffatitan brancai (bottom), not to scale. Each vertebra is
shown in left lateral view (on the left) and posterior view (on the right).
Articular surfaces, where each vertebra meets its neighbour, are
highlighted in red (for the centra) and blue (for the zygapophyses).
Articular surfaces that are concealed from view are cross-hatched:
prezygapophyses face upwards and inwards, so that the facets are
inclined towards the midline. In sauropods, the centra have ball-and-
socket joints. In birds, the joints are saddle-shaped, and the anterior
articular surface is hidden in lateral view. Despite numerous differences
in detail, the bird and sauropods vertebrae strongly resemble each
other in fundamentals.
doi:10.1371/journal.pone.0078214.g002

Figure 1. The world’s biggest mounted skeleton: the sauropod
Giraffatitan brancai. Mounted skeleton of Giraffatitan brancai para-
lectotype MB.R.2181 at the Museum für Naturkunde Berlin, Berlin,
Germany. Lead author for scale, by the skeleton’s elbow. This is the
largest mounted skeleton in the world based primarily on real remains
rather than sculptures. It is 13.27 m tall, and represents an animal that
probably weighed about 20–30 tonnes[61]. Much larger sauropods
existed, but they are known only from fragmentary remains.
doi:10.1371/journal.pone.0078214.g001

Cartilage in Sauropod Necks
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articulate with the centra of the previous and subsequent vertebrae

in the column. Above the centrum is a more elaborate

construction called the neural arch. (The neural canal runs from

front to back down the middle of the vertebra, between the

centrum and arch, and houses the spinal cord.) As well as the

centra, adjacent vertebrae also touch at another pair of points

above the centra, the zygapophyses. Each vertebra has two pairs of

these: prezygapophyses in front and postzygapophyses at the back.

Each vertebra’s prezygapophyses articulate with the postzygapo-

physes of the preceding vertebra (Figure 3).

For the purposes of this work, other vertebral features (neural

spines, cervical ribs, epipophyses, etc.) are ignored.

The role and form of intervertebral cartilage
The bone of one vertebra never directly touches the next:

instead, the articular surfaces are covered with a thin layer of

cartilage, which is softer, smoother and more resilient than bone.

Except in rare cases (e.g., [24,25]), cartilage is not preserved in

fossils, and we are unaware of any preserved articular cartilage in

sauropod vertebrae. When we speak of fossil vertebrae in this

paper, we are referring only to fossilised bone.

The layers of cartilage covering the articular surfaces of

vertebrae do not always closely follow the shape of the underlying

bone, but can vary significantly in thickness. For example, the

thickness of cartilage between adjacent vertebrae of a king penguin

(Aptenodytes patagonica) ([26]: figure 4) is more than twice as thick at

mid-height as it is at the dorsal and ventral margins. The shape of

articular bony surfaces cannot therefore be assumed to indicate the

functional shape of those surfaces in life. This is probably true of

tetrapods in general but it is particularly important for large non-

avian dinosaurs, in which extensive cartilage was present at many

joints and did not always reflect the morphology of the underlying

bones ([25,27,28] but see also [29]).

The morphology of cartilage in intervertebral joints varies

significantly among taxa. In most animals, there is a distinct

fibrocartilaginous element, known as a disc, between the centra of

consecutive vertebrae. These discs consist of an annulus fibrosus

(fibrous ring), made of several layers of fibrocartilage, surrounding

a nucleus pulposus (pulpy centre) with the consistency of jelly [30,31].

But in birds, uniquely among extant animals, there is no separate

cartilaginous element. Instead, the articular surfaces of the bones

are covered with layers of hyaline cartilage which articulate

directly with one another, and are free to slide across each other.

The adjacent articular surfaces are enclosed in synovial capsules

similar to those that enclose the zygapophyseal joints [32].

The difference between these two constructions is very apparent

in dissection: in birds, adjacent vertebrae come apart easily once

the surrounding soft tissue is removed; but in mammals, it is very

difficult to separate consecutive vertebrae, as they are firmly

attached to the intervening intervertebral disc.

Crucially, the extant phylogenetic bracket (EPB) [33] does not

help us to establish the nature of the intervertebral articulations in

sauropods, as the two extant groups most closely related to them

have different articulations. As noted, birds have synovial joints;

but crocodilians, like mammals, have fibrocartilaginous interver-

tebral discs.

To complicate matters further, thin articular discs occur in the

necks of some birds – for example, the ostrich (Struthio camelus)

(Figure 4), the swan (Cygnus atratus) ([34]: figure 3), and the king

penguin ([26]: figure 4). But these discs do not occur in all birds –

for example, they are absent in the turkey (Meleagris gallopavo) and

the rhea (Rhea americana). When they are present, these articular

discs divide the synovial cavity and prevent the (cartilage-covered)

bones on either side from ever articulating directly with each

other, just like the articular discs in the human temporomandib-

ular and sternoclavicular joints. These discs are thinner than the

true intervertebral discs of mammals and crocodilians; and they

are different in composition, lacking the annulus/nucleus structure

and consisting of a simple sheet of fibrocartilage.

The thickness of cartilage between consecutive cervical verte-

brae is considerable in at least some taxa. For example, in the

dromedary camel (Camelus dromedarius), mounted skeletons that

omit spacers where the cartilage would have been in life instead

have large gaps between the centra, even when the neck is posed

well below habitual posture (Figure 5).

In this paper, we express thickness of cartilage as a cartilage/

bone percentage. This is not to be confused with the percentage of

total segment length that is accounted for by cartilage: when a

10 cm bone has 1 cm of cartilage on the end, the cartilage/bone

ratio is 10%, but cartilage accounts for only 9.09% – one eleventh

– of the total segment length.

Figure 3. Articulated sauropod vertebrae. Representative mid-
cervical vertebra of Giraffatitan brancai, articulating with its neighbours.
The condyle (ball) on the front of each vertebra’s centrum fits into the
cotyle (socket) at the back of the preceding one, and the prezygapo-
physes articulate with the preceding vertebra’s postzygapophyses.
These vertebrae are in Osteological Neutral Pose, because the pre- and
postzygapophyseal facets overlap fully.
doi:10.1371/journal.pone.0078214.g003

Figure 4. Intervertebral articular discs of an ostrich. Interverte-
bral articular discs of an ostrich (not to scale). Left: first sacral vertebra in
anterior view, showing articular disc of joint with the last thoracic
vertebra. Right: posterior view view of a cervical vertebra, with probe
inserted behind posterior articular disc. The cervical vertebra is most
relevant to the present study, but the the sacral vertebra is also
included as it shows the morphology more clearly. These fibrocartilag-
inous articular discs divide the synovial cavity, like the articular discs in
the human temporomandibular and sternoclavicular joints, and should
not be confused with the true intervertebral discs of mammals and
other animals, which consist of a nucleus pulposus and an annulus
fibrosus.
doi:10.1371/journal.pone.0078214.g004
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Osteological neutral pose (ONP) and range of motion
(ROM)

Stevens and Parrish [13] introduced the notion of Osteological

Neutral Pose (ONP), which is attained when the centra abut

without gaps and the zygapophyseal facets of consecutive

vertebrae are maximally overlapped. The vertebrae in Figure 3

are in ONP.

When the neck extends or flexes (bends upwards or downwards

respectively) the centra remain in articulation, rotating against

each other, and the zygapophyses glide past each other. The point

around which a pair of consecutive centra rotate with respect to

one another is called their centre of rotation. Various factors limit

how far a given intervertebral joint can rotate: in the extreme case,

bone collides with bone, creating an osteological stop. More often,

rotation is inhibited before this point is reached by limits to

zygapophyseal travel. The joint between one vertebra’s post-

zygapophysis and the prezygapophysis of the next is enclosed in a

delicate synovial capsule which cannot be stretched indefinitely.

Stevens and Parrish stated that ‘‘pre- and postzygapophyses could

only be displaced to the point where the margin of one facet

reaches roughly the midpoint of the other facet’’ [13], citing

unpublished data. Range Of Motion (ROM) in their sense is the

degree of movement that can be attained while retaining at least

50% overlap between zygapophyseal facets (Figure 6). Although

this figure remains to be demonstrated, and is in fact contradicted

by Stevens and Parrish themselves ([17]: 191), who observed that

when giraffes bend their necks laterally there is almost no

zygapophyseal overlap, we provisionally accept the 50% overlap

criterion here.

For the purposes of this discussion, ROM is considerably

simplified from the reality. The shapes of zygapophyseal facets can

be complex, and limit or facilitate motion. The inclination of facets

introduces further complexity. As shown in Figure 6, anterior

positioning of the zygapophyses in some sauropods (unlike the

situation in birds) means that zygapophyseal displacement is

primarily dorsoventral rather than anteroposterior. In some cases,

zygapophyseal facets can pull apart rather than remaining in

articulation. As a final simplification, in this paper we consider

only vertical movement of the neck, not lateral movement or

twisting. Despite these simplifications, ROM remains a useful

abstraction, and its relation to zygapophyseal facet size is

apparent: ROM varies more or less linearly with facet size and

inversely with distance from zygapophyses to the centre of

rotation. Equal ranges of motion can be achieved by small

zygapophyseal facets close to the centre of rotation, or larger facets

further from it.

Materials and Methods

Extinct animal specimens
OMNH 53062 is the holotype of the long-necked basal

titanosauriform Sauroposeidon. The specimen consists of four

articulated mid-cervical vertebrae. Portions of the three more

anterior vertebrae were CT scanned in January 1998 to image

their pneumatic internal structures [35–37]. This is the first time

that these scans have been used to investigate the shapes of the

articular surfaces of the vertebrae or to estimate the thickness of

the intervertebral cartilage.

CM 3390 and CM 11339 are two partial skeletons of juvenile

individuals of Apatosaurus. They were collected from the Carnegie

Museum Quarry at Dinosaur National Monument, which also

yielded CM 3018, the holotype of Apatosaurus louisae. To date, no

single quarry has produced members of more than one valid

species of Apatosaurus, and according to McIntosh ([38]: 26) these

specimens ‘‘show no characters to distinguish them from the above

[holotype] specimens of Apatosaurus louisae.’’ For the purposes of

this discussion, we accept this tentative referral.

Extant animal specimens
It is impossible to fully determine the effect of articular cartilage

on ONP and ROM of sauropod necks directly due to the paucity

Figure 5. Intervertebral gaps in camel necks. Head and neck of
dromedary camels. Top: UMZC H.14191, in right lateral view, posed well
below habitual posture, with apparently disarticulated C3/C4 and C4/C5
joints. Photograph taken of a public exhibit at University Museum of
Zoology, Cambridge, UK. Bottom: OUMNH 17427, in left lateral view,
reversed for consistency with Cambridge specimen. Photograph taken
of a public exhibit at Oxford University Museum of Natural History, UK.
Inset: detail of C4 of the Oxford specimen, showing articulations with C3
and C5. The centra are separated by thick pads of artificial ‘‘cartilage’’ to
preserve spacing as in life.
doi:10.1371/journal.pone.0078214.g005

Figure 6. Range of motion in a vertebral joint. Range of Motion
(ROM) illustrated schematically for a single intervertebral joint of
Giraffatitan brancai. The grey-scale vertebrae are shown in Osteological
Neutral Pose. The red vertebra has been rotated upwards (‘‘extended’’)
until its postzygapophyseal facet overlaps 50% with the prezygapo-
physeal facet of the succeeding vertebra, in accordance with the
assumption of Stevens and Parrish. Similarly, the blue vertebra has been
rotated downwards (‘‘flexed’’) until 50% zygapophyseal overlap is
achieved. Because the zygapophyseal articulations in the neck of
Giraffatitan are some way anterior to the those of the centra, the
relative movement of the articulating zygapophyseal facets is
anteroventral–posterodorsal; in taxa such as the turkey in which the
zygapophyseal articulation are directly above those of the centra,
relative movement is anterior-posterior.
doi:10.1371/journal.pone.0078214.g006
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of specimens with preserved cartilage. As a proxy, we took

measurements from the neck of a domestic turkey, sourced from a

local butcher. We interpreted these as proportions of whole-neck

length, vertebra length and zygapophysis length.

Turkeys are a reasonable model organism for these purposes, as

birds are the closest living relatives of sauropods and their cervical

architecture is similar [1,39], but see the discussion below of other

animals’ necks that are used as well.

The complete neck of the turkey is made up of 14 vertebrae

[40], of which the last few are functionally part of the torso.

However, the neck obtained for this work is incomplete, consisting

of only eight vertebrae. Based on the absence of carotid processes

in the most posterior vertebra, this is probably C13, meaning that

the available neck segments represent C6–C13. This is consistent

with the profiles of the vertebrae illustrated by Harvey et al. ([40]:

plate 65). Although the absence of the first five vertebrae is

regrettable, it is not critical as the base of the neck is the region

where flexion and extension have the greatest effect on posture.

We also obtained less detailed cartilage measurements for a

selection of other extant animals as detailed below. The ostrich,

rhea, alligator (Alligator mississippiensis) and horse (Equus caballus) are

all salvage specimens, and they were obtained, dissected, and

photographed with the approval of the Institutional Animal Care

and Use Committee at Western University of Health Sciences.

The camel is a mounted museum specimen, the dog is a veterinary

subject, and the giraffe was obtained from an anonymous zoo via

the Royal Veterinary College, UK.

We are all too aware that the wildly different provenances and

ages of these specimens, and the different measurement techniques

used, make direct comparisons problematic. As noted in the

Future Work section below, we hope subsequent studies will be

able to take advantage of a wider and more controlled range of

specimens.

Fossil CT scanning protocol
Sauropod vertebrae were CT scanned at the University of

Oklahoma Medical Center in Oklahoma City in January 1998

(Sauroposeidon) and January 2000 (both specimens of Apatosaurus).

CT scans were performed using a General Electric 9800 Highlight

Advantage 4th generation scanner. Scout images were obtained in

lateral projection with a technique setting of 120 kVp (kilovolt

peak) and 40 mA (milliamperes). Axial images were produced at

120 kVp and 120 mA. Data were reconstructed in bone algorithm

using a Star Tech, Inc., One Sun CPU computed tomography

array imaging processor and the GE Advantage version 1.0

imaging software package.

Vertebra measurement protocol
In order to determine the thickness of intervertebral cartilage

and possible other soft-tissue, it is necessary to accurately measure

the length of both intact neck segments and their constituent

vertebrae.

Measuring the lengths of intact necks is awkward, even when

the heads and torsos have been removed. Contraction of dorsal

tension members causes them to curl up, which impedes attempts

to find the straight-line length. It is necessary to hold a neck

straight, and simultaneously to gently compress it end-to-end in

order to prevent artificial elongation due to post-mortem

separation of adjacent vertebrae. This is hard to achieve without

buckling the neck out of the straight line. With the neck

straightened and longitudinally compressed, a measurement must

be taken along the neck, between perpendiculars, from the front of

the anteriormost vertebra to the back of the posteriormost.

To solve this problem, a simple measurement rig was

constructed from Duplo bricks and a baseboard. The bricks were

used to construct an ’L’-shaped bracket (Figure 7). The neck is

then laid in this bracket with its dorsal side facing away and into

the back wall. It is unrolled and straightened against that wall.

Once the neck is in place, with its posterior end hard against the

left wall, a marker brick is used to locate the position of the

anteriormost part of the neck, sliding along the back wall until the

neck prevents further travel. If this is done correctly, there is very

little movement: the entire series of vertebrae is lined up and

solidly abutted, with bone pushing against the left wall and the

marker brick. The distance between left wall and this brick is then

the length of the neck. It is easy to remove the neck (without

moving the marker brick) and measure this distance.

Measuring the length of individual cervical vertebrae is also

problematic, due to the complex saddle shape (‘‘heterocoely’’) of

Figure 7. Measurement rig for necks. Measurement rig for intact
turkey necks, constructed from Duplo bricks and baseboard. The neck is
pushed into the angle between the back wall (yellow) and the left wall
(red), and held straight along the back wall. The marker brick (blue)
abuts the end of the neck: the distance between the left wall and the
marker brick is the length of the neck between perpendiculars.
doi:10.1371/journal.pone.0078214.g007

Figure 8. Cervical vertebra 7 from a turkey. Cervical vertebra 7
from a turkey: anterior view on the left; dorsal, left lateral and ventral
views in the middle row; and posterior on the right.
doi:10.1371/journal.pone.0078214.g008
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the articular faces of the centrum (Figure 8). The anterior articular

surface is convex dorsoventrally but concave transversely, and is

not the most anterior part of the vertebra; and the posterior face is

concave dorsoventrally and convex transversely. For our purposes,

the most interesting metric is not total length (which would include

the anteriorly projecting cervical-rib loops and in some cases

overhanging postzygapophyses) but functional length.

We define functional length as the straight-line distance between

the most anterior point on the midline of the anterior face, and the

most anterior point on the midline of the posterior face – for birds,

that is between the saddle points of the anterior and posterior

articular surfaces of the centrum (Figure 9). Functional length can

also be thought of as the distance between the same point on two

consecutive vertebrae when they are articulated. This definition

works for vertebrae of any shape – for example, those of

sauropods, which have ball-and-socket joints rather than saddle-

shaped joints, also have a functional length equal to the distance

between the most anterior points on the midlines of the anterior

and posterior faces. Functional length may be measured either

including or excluding articular cartilage. We use it exclusive of

cartilage except where otherwise noted.

We use functional, rather than total, length because it has the

important property that the sum of the functional lengths of a

sequence of vertebrae is equal to the functional length of the

sequence as a whole.

To measure the functional length of the turkey vertebrae, we

glued a tooth onto one jaw of the calipers, facing the other jaw,

and recalibrated them so that they read zero when the tooth was in

contact with the opposing jaw. Then we placed the vertebra

between the jaws of these modified calipers, with the tooth

protruding into the transverse concavity of the anterior articular

surface of the centrum, and with the dorsoventral concavity of the

posterior articular surface straddling the unmodified jaw

(Figure 10).

We also measured the anteroposterior length of all four

zygapophyseal facets of each vertebra with unmodified calipers.

Each measurement (functional centrum length and four

zygapophyseal facet lengths) was made three times: once on the

freshly dissected-out vertebrae; once after they had been simmered

and cleaned, and cartilage had been removed from the articular

surfaces; and once more after being degreased in dilute hydrogen

peroxide and thoroughly dried. The bones of living animals most

closely resemble the first of these measurements, while fossil bones

most closely resemble the last. The differences between these sets

of measurements show how calculations based on fossils mislead as

to the behaviour of bones in living animals.

Results

Data from sauropod CT scans
Sauroposeidon OMNH 53062. The four vertebrae that

make up the holotype of Sauroposeidon are inferred to represent C5–

C8 [35,36], and we refer to them as such here. The specimen

therefore includes three intervertebral joints: between C5 and C6,

between C6 and C7, and between C7 and C8. C7 and C8 are

simply too large to pass through a medical CT scanner, but the

other two joints have been imaged. At the C5/C6 joint, the

condyle of C6 is centered in the cotyle of C5, and the

zygapophyses on the right are in articulation (Figures 11 and

12). (The left sides of the vertebrae were facing up in the field and

were badly damaged by erosion prior to excavation.) As in

Apatosaurus CM 3390, the cotyle is more rounded than the condyle,

so the radial spacing between the vertebrae varies from the rim of

the cotyle to the centre. The spacing from the front of the condyle

of C6 to the deepest point in the cotyle of C5 is 52 mm, but the

minimum radial spacing between the condyle and the cotyle rim is

only 31 mm.

C6 is slightly flexed relative to C7, and the condyle of C7 is

displaced toward the top of the cotyle of C6, rather than being

maximally engaged like the C5/C6 joint. The condyle of C7 has a

very odd shape. Although the condyle has a maximum dorsoven-

tral diameter of just over 170 mm, it is only about 30 mm long

(Figure 13). The unusually flattened shape cannot be an artefact of

Figure 9. Functional length of a cervical vertebra. Functional
centrum length of a cervical vertebra of a turkey. The measurement is
taken between the inflection points of the saddle-shaped articulations
at each end of the centrum, shown here by the blue arrow connecting
the red lines that mark the position of the saddle points.
doi:10.1371/journal.pone.0078214.g009

Figure 10. Modified calipers for measuring functional vertebral
length. Modified calipers used to measure functional length of a turkey
vertebra. The tooth glued to the left jaw protrudes into the transverse
concavity of the anterior articular surface and the dorsoventral
concavity of the posterior articular surface straddles the right jaw.
doi:10.1371/journal.pone.0078214.g010
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preparation or damage because the anterior end of the condyle is

covered by matrix and surrounded by the cotyle. It is difficult to

imagine a form of taphonomic distortion that would act only on

the vertebral condyle, and the rest of the vertebrae are anything

but anteroposteriorly compressed. Although it looks odd, the

condyle of C7 is consistent with the condyle of C6 and with that of

D2 in CM 3390 in having a broader, flatter curvature than the

cotyle with which it articulated. Assuming a minimum 30 mm

radial spacing around the rim of the cotyle, as at the C5/C6 joint,

gives a maximum anteroposterior spacing at the centre of about

60 mm.

Conceptually, we might expect cartilage in a ball-and-socket

joint to approach one of two simple conditions: a constant radial

thickness, or a constant anteroposterior thickness (Figure 14: parts

A and B). Note that in these simple models the condyle is assumed

to have the same basic shape as the cotyle. At the two

intervertebral joints in Sauroposeidon that have been imaged, this

expectation is not met – in both cases, the cotyle is deeper and

more strongly curved than the condyle. However, at the C5/C6

joint the anteroposterior separation between the condyle and

cotyle is almost constant, at least in the sagittal plane (Figure 14:

part C). But this even separation is achieved by having a condyle

that is much smaller in diameter than the cotyle, and of a different

shape. The condyle of C6 is not as flattened as the condyle of C7,

but it is still much flatter than the condyles in cervicals of

Giraffatitan ([41]: figures 17–46) and North American cervicals

referred to Brachiosaurus ([42]: figure 7.2). It is tempting to

speculate that the flattened condyles and nearly constant thickness

of the intervertebral cartilage are adaptations to bearing weight,

which must have been an important consideration in a cervical

series more than 11 meters long, no matter how lightly built.

The cotyles of C5 and C6 are both 65–70 mm deep. So the

distance from the foremost point of the C6 condyle to the deepest

point of its cotyle includes the centrum length (1220 mm) minus

the depth of the C6 cotyle (67 mm), for a total of about 1153 mm

from cotyle to cotyle. The maximum cartilage thickness of 52 mm

therefore accounts for 4.5% of the bone length, which is

proportionally thinner than in most of the other animals we have

sampled.

Centrum shape is conventionally quantified by Elongation

Index (EI), which is defined as the total centrum length divided by

the dorsoventral height of the posterior articular surface.

Sauroposeidon has proportionally very long vertebrae: the EI of C6

is 6.1. If instead it were 3, as in the mid-cervicals of Apatosaurus, the

centrum length would be 600 mm. That 600 mm minus 67 mm

for the cotyle would give a functional length of 533 mm, not 1153,

and 52 mm of cartilage would account for 9.8% of the length of

that segment. And, of course, not all of the cervicals in Sauroposeidon

were so long. Assuming a cervical count of thirteen, multiplying by

an average of 52 mm of cartilage per segment comes to 67 cm of

cartilage in the neck. Assuming a summed vertebral length of 11.5

meters (based on comparisons with Brachiosaurus and Giraffatitan

[36]), the neck in life would have been just over 12 meters long, for

a cartilage/bone ratio of 5–6%.

Apatosaurus louisae CM 3390
CM 3390 includes a pair of articulated anterior dorsal vertebrae

(Figure 15). The vertebrae lack hyposphenes, as expected for

anterior dorsals of Apatosaurus ([43]: 201), and based on the

centrum proportions and the low positions of the parapophyses on

the centra (Figure 15 part A), the vertebrae probably represent the

first two dorsals – rather than posterior cervicals, as posited by

Wedel ([44]: 349 and figure 7). D2 has a centrum length of

90 mm, a cotyle height of 58 mm, and so an EI of about 1.5. The

equivalent vertebra in the mounted holotype of A. louisae, CM

3018, has a cotyle height of 225 mm, about 3.9 times the linear

size of CM 3390.

The slice thickness in the CT scan is 3 mm, with 1 mm of

overlap on either side, yielding a distance of 2 mm from the centre

Figure 11. Fifth and partial sixth cervical vertebrae of
Sauroposeidon. Photograph and x-ray scout image of C5 and the
anterior portion of C6 of Sauroposeidon OMNH 53062 in right lateral
view. The anterior third of C5 eroded away before the vertebra was
collected. C6 was deliberately cut through in the field to break the
multi-meter specimen into manageable pieces for jacketing (see [37] for
details). Note that the silhouettes of the cotyle of C5 and the condyle of
C6 are visible in the x-ray.
doi:10.1371/journal.pone.0078214.g011

Figure 12. CT slices from fifth cervical vertebrae of Sauroposei-
don. X-ray scout image and three posterior-view CT slices through the
C5/C6 intervertebral joint in Sauroposeidon OMNH 53062. In the bottom
half of figure, structures from C6 are traced in red and those from C5 are
traced in blue. Note that the condyle of C6 is centered in the cotyle of
C5 and that the right zygapophyses are in articulation.
doi:10.1371/journal.pone.0078214.g012
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of one slice to the next. Resolution within each slice is 0.571 mm/

pixel (44.5 dpi). In this and all other scans, the slices are numbered

from anterior to posterior.

The deepest part of the cotyle of D1 is first visible in slice 25

(Figure 15 part B). The condyle of D2 is first apparent in slice 31

(Figure 15 part C). However, we cannot tell where in the 2 mm

thickness represented by slice 25 the cotyle actually begins, and the

same uncertainty applies to the most anterior point of the condyle

within slice 31. The spacing between the vertebrae is therefore at

least five slices (26–30) and no more than 7 (25–31, inclusive), or

10–14 mm. The first clear slice through the cotyle of D2 is in slice

61 (Figure 15 part G). So the functional length of D2, measured

from the foremost part of the condyle to the deepest part of the

cotyle is 29–31 slices or 58–62 mm. The gap for cartilage accounts

for 1262/6062, a cartilage/bone ratio of 2064%.

Juvenile sauropods have proportionally short cervicals ([36]:

368–369, figure 14, and table 4). The scanned vertebrae are

anterior dorsals with an EI of about 1.5. Mid-cervical vertebrae of

this specimen would have EIs about 2, so the same thickness of

cartilage would yield a cartilage/bone ratio of 1262/8062 or

1563%. Over ontogeny the mid-cervicals telescoped to achieve

EIs of 2.3–3.3. The same thickness of cartilage would then yield a

cartilage/bone ratio of 9–13%, which is consistent with the

thickness we calculated for an adult Apatosaurus based on

Sauroposeidon, above. Intervertebral cartilage would still be 10–

15% of bone length in the proportionally shorter cervicodorsals.

Averaged over the whole neck, in the adult cartilage probably

contributed about 10–12% to the length of the neck.

Figure 13. Joint between sixth and seventh cervicals vertebrae of Sauroposeidon. X-ray scout image of the C6/C7 intervertebral joint in
Sauroposeidon OMNH 53062, in right lateral view. The silhouette of the condyle is traced in blue and the cotyle in red. The scale on the right is marked
off in centimeters, although the numbers next to each mark are in millimeters.
doi:10.1371/journal.pone.0078214.g013

Figure 14. Geometry of opisthocoelous intervertebral joints.
Hypothetical models of the geometry of an opisthocoelous interverte-
bral joint compared with the actual morphology of the C5/C6 joint in
Sauroposeidon OMNH 53062. A. Model in which the condyle and cotyle
are concentric and the radial thickness of the intervertebral cartilage is
constant. B. Model in which the condyle and cotyle have the same
geometry, but the condyle is displaced posteriorly so the anteropos-
terior thickness of the intervertebral cartilage is constant. C. the C5/C6
joint in Sauroposeidon in right lateral view, traced from the x-ray scout
image (see Figure 12); dorsal is to the left. Except for one area in the
ventral half of the cotyle, the anteroposterior separation between the
C5 cotyle and C6 condyle is remarkably uniform. All of the arrows in
part C are 52 mm long.
doi:10.1371/journal.pone.0078214.g014
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Unfortunately, none of the slices provide us with as clear an

image of the condyle-cotyle separation as at the C5/C6 joint in

Sauroposeidon. But we can investigate which of the hypothetical

models (Figure 14) the real vertebrae more closely approach by

measuring the thickness of the cartilage gap not only at the deepest

part of the cotyle but also at its margins. By analysing the full

sequence of slices we can see that in slice 46 (Figure 15 part F), the

lateral walls of condyle and cotyle are orthogonal to the plane of

the section (so the cartilage gap is not artificially inflated by

measuring its width on a slice that cuts it at an angle). In that slice,

the separation between condyle and cotyle is about 3.5 mm. In

slice 37 (Figure 15 part E), the uppermost margins of condyle and

cotyle are orthogonal to the plane of slice, and the separation is

about 4 mm. These results are consistent with each other, showing

that the condyle was not displaced toward the margin of the cotyle.

However, this radial thickness of cartilage at the rim of the condyle

and cotyle is only about one third of the maximum anteroposterior

thickness of the cartilage from the front of the condyle to the

deepest part of the cotyle. This indicates that the condyle is not

concentric with the cotyle – in fact, it is considerably less rounded,

just as in Sauroposeidon. As more articulated sauropod vertebrae are

scanned, it will be interesting to see if this geometry of the

intervertebral joint is a convergent feature of Apatosaurus and

Sauroposeidon or something common to most or all sauropods.

Slice 33 is of particular interest because it shows the condyle

centred in the cotyle and the left zygapophyses in articulation

(Figure 15 part D). Adjacent slices confirm that the left

zygapophyses are in tight articulation over their entire length.

Cartilage thickness between the zygapophyses is 1–2 mm.

Unfortunately, the zygapophyses on the right are not preserved.

The tight articulation of the left zygapophyses combined with the

centring of the condyle of D2 in the cotyle of D1 indicates that this

posture was achievable in life.

Using various landmarks we estimate that D1 is extended 31–

36u relative to D2. This degree of extension is noteworthy; it is

considerably more than the ,6u of extension that Stevens &

Parrish [13,17] estimated between the cervical vertebrae of adult

specimens of Apatosaurus and Diplodocus. The anterior dorsals have

very large zygapophyseal facets that are not as far from the centre

of rotation as they are in most of the cervical series, and these

large, advantageously-positioned zygapophyses may have facilitat-

ed a greater range of motion than is found in the middle of the

neck. This is consistent with the finding that most extant tetrapods

raise and lower their heads by extending and flexing at the

cervicodorsal junction, rather than bending in the middle of the

neck [45,46]. It also reinforces the argument that flexibility of the

anterior dorsal vertebrae should considered when trying to

estimate the range of motion of the head and neck [22].

Apatosaurus louisae CM 11339. CM 11339 includes a pair

of articulated middle or posterior dorsal vertebrae, with hypo-

sphene/hypantrum articulations (Figure 16). The more posterior

of the two vertebrae has a cotyle height of 94 mm. Middle and

posterior dorsal vertebrae of CM 3018 have cotyle heights of 315–

365 mm, or 3.4–3.9 times the linear size of CM 11339. The

individuals represented by CM 3399 and CM 11339 are therefore

about the same size, roughly one quarter of the size of the large

and presumably adult CM 3018. (They cannot however both

represent the same individual as they contain overlapping

elements – specifically, most of the dorsal column.)

The slice thickness in the CT scan is 5 mm, with 1.5 mm of

overlap on either side, yielding a distance of 3.5 mm from the

centre of one slice to the next. The cotyle of the anterior vertebra

is first revealed in slice 39 (Figure 16 part B). The condyle of the

second vertebra first appears in slice 43 (Figure 16 part C). The

spacing between the vertebrae is therefore four slices (plus or

minus one slice, as discussed above for CM 3390) or 1463.5 mm.

The first clear slice through the cotyle of the second vertebra is in

Figure 15. First and second dorsal vertebrae of Apatosaurus CM 3390. Articulated first and second dorsal vertebrae of Apatosaurus CM 3390.
A. Digital model showing the two vertebrae in articulation, in left lateral (top) and ventral (bottom) views. B-G. Representative slices illustrating the
cross-sectional anatomy of the specimen, all in posterior view. B. Slice 25. C. Slice 31. D. Slice 33. E. Slice 37. F. Slice 46. G. Slice 61. Orthogonal gaps are
highlighted where the margins of the condyle and cotyle are parallel to each other and at right angles to the plane of the CT slice. ’Zygs’ is short for
’zygapophyses’, and NCS denotes the neurocentral synchondroses.
doi:10.1371/journal.pone.0078214.g015
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slice 70 (Figure 16 part D). So the functional length of the second

vertebra is 2761 slices or 94.563.5 mm. The cartilage/bone ratio

is therefore 1463.5/94.563.5 or 1564%.

Data from turkey neck
Tables 1 and 2 contain all measurements made of the dissected

turkey neck. The banner figures are as follows:

The intact neck segment measured 189.5 mm from the most

anterior to most posterior bone. Once the neck had been dissected

apart into individual vertebrae, the length of the column of these

vertebrae was 186.0 mm. After removing all cartilage and other

soft tissue and drying the vertebrae, the articulated sequence

shrank to 179.0 mm. And after degreasing in dilute hydrogen

peroxide and fully drying, the same articulated column measured

178.0 mm. The intact neck, then, was 6.46% longer than the

length derived from fully cleaned vertebrae whose condition would

most closely approach that of fossilised vertebrae.

Therefore, in order to reconstruct the in-vivo length of any

vertebra, it is necessary to add 6.46% to the length of the dry bone.

The effect of this is shown in Figure 17. (For simplicity, we added

the whole 6.46% to one of the articulating surfaces rather than

adding 3.23% to each.) Although this illustration is only schematic,

it gives a reasonable indication of the magnitude of the effect:

measuring from the composite image, we find that the inclusion of

articular cartilage increases intervertebral elevation by about 15u
per joint. If this were replicated along a neck of 14 vertebrae, the

resulting additional deflection of the anteriormost vertebra would

be an enormous 210u.
An additional extension of 210u in neutral pose is plainly

impractical as it would result in the head being carried upside-down

and directed backwards. What this really shows is simply that necks

are not habitually held in neutral posture [20].

The changes in measured zygapophyseal length were less

consistent than those in centrum length, due to the difficulty of

measuring the facets accurately: the limits of the facets are difficult

to make out, especially when soft tissue is present. Although the

general trend was for the measurements of any given facet to

decrease as soft-tissue was removed, in a few cases the lengths

measured for cleaned, degreased and dried zygapophyseal facets

were longer than those taken from the vertebrae when freshly

dissected. It seems unlikely that these measurements are correct:

probably the earlier measurements underestimated the facet

lengths. However, we have used the figures as measured rather

than ‘‘fudging’’, in the hope that any over- and under-measure-

ments cancel out across the whole data set.

With these caveats, the key zygapophyseal measurements are

that the average lengths of pre- and postzygapophyseal facets

when freshly dissected (i.e., including cartilage) were 8.30 and

8.51 mm respectively; and that the corresponding lengths from

cleaned, degreased and dried facets were 7.41 and 7.73 mm. This

means that the additional length contributed by cartilage is 12%

for prezygapophyses and 11% for postzygapophyses, an average of

about 11%. Measurement error means that the true figure may be

rather more than this (or conceivably slightly less), but we will use

the figure 11%.

Data from other animals
Turkeys are not the only animals whose intervertebral cartilage

can shed light on that of sauropods. Some data are available for

certain other animals, though not yet in as much detail as above.

Note, however, that these data are only indicative, and cannot in

general be compared directly with those above as they were

obtained by a variety of different methods.

The cartilage of other birds is also informative, since all modern

birds are equally closely related to sauropods. Of particular

interest is the ostrich, as it is the largest extant bird. In a sequence

of 14 cervical vertebrae (C3–C16) the total length of the centra

when wet and with cartilage intact was 865.5 mm, but after drying

and removal of cartilage only 814 mm [47]. Thus intervertebral

cartilage accounted for an increase of 51.5 mm, or 6.3% over the

length of bone alone.

The rhea is closely related to the ostrich, but has very different

intervertebral cartilage. Measuring the cartilage thickness on both

sides of the vertebrae of a sagittally bisected rhea neck (Figure 18),

we found that on average cartilage added 2.59% to the length of

the vertebrae (Table 3).

Among extant animals, crocodilians are the next closest relatives

to sauropods. Therefore, birds and crocodilians together form an

extant phylogenetic bracket. We examined a sagittally bisected

frozen American alligator. This animal was wild-caught and so its

exact age is not known, but the snout-vent length of 51 cm

suggests an age of about one year. We measured the thickness of

intervertebral cartilage from photographs (Figure 19) using GIMP

[48], a free image-editing program similar to PhotoShop. We

found that of a total neck length of 779 pixels, 101 pixels were

cartilage, constituting 14.9% of the length of the bone (678 pixels).

The horse is of interest as a good-sized animal with a reasonably

long neck and strongly opisthocoelous cervical vertebrae – that is,

having vertebrae with pronounced condyles and cotyles rather

than flat articular surfaces. From photographs of a sagittally

bisected horse head and neck (Figure 20), we measured the

thickness of intervertebral cartilage for three vertebrae (C2, C3

and C4). C5 was broken and more posterior vertebrae were

absent. Of a total C2–C4 neck length of 940 pixels, 61 pixels were

Figure 16. Dorsal vertebrae of Apatosaurus CM 11339. Articulat-
ed middle or posterior dorsal vertebrae of Apatosaurus CM 11339. A. X-
ray scout image showing the two vertebrae in articulation, in left lateral
view. B–D. Slices 39, 43 and and 70 in posterior view, showing the most
anterior appearance of the condyles and cotyles.
doi:10.1371/journal.pone.0078214.g016
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cartilage, constituting 6.9% of bone length (879 pixels). This

thickness of neck cartilage is consistent with those illustrated in

veterinary radiographs [49–52].

Camels also have long necks and opisthocoelous cervical

vertebrae. We might expect their necks to be similar to those of

horses, but X-rays show that they are very different (Figure 21).

While the condyles of horses’ cervicals are deeply inserted into

their corresponding cotyles, those of the camel do not even reach

the posterior lip of their cotyles, so that a clear gap is visible

between centra in lateral view. (The same is true in alpacas

[53,54].) It is difficult to measure the thickness of cartilage when

much of it is hidden inside the cotyle; however, we were able to

obtain a rough measurement of 13% the length of the bones, by

measuring cartilage space from condyle rim to cotyle margin. The

example of the camel contradicts Stevens and Parrish’s claim,

quoted in the introduction, that ‘‘the mammalian opisthocoelous

biomechanical design [consists] of condyles that insert deeply in

cotyles of matching curvature, leaving little room for cartilage […]

Table 1. Measurements of individual vertebrae of a turkey neck: anteroposterior lengths of centra and zygapophyseal facets,
measured ‘‘wet’’ (freshly dissected), ‘‘dry’’ (after removal of all flesh and one day’s drying) and ‘‘degreased’’ (after one day in dilute
hydrogen peroxide and one week’s thorough drying).

WET

Vertebra Centrum Prezyg Postzyg

Length L R L R

A 22.5 6.78 7.3 7.86 8.48

B 24.5 7.53 7.43 8.28 7.53

C 25.05 7.43 6.76 7.63 8.87

D 24.5 7.47 8.11 8.88 8.83

E 24.5 8.45 8.86 8.96 9.27

F 24 8.58 8.76 8.12 9.53

G 22.8 9.28 9.51 8.46 9.67

H 19.6 9.57 10.93 7.2 8.61

Total/Avg 187.45 8.14 8.46 8.17 8.85

8.3 8.51

DRY RATIO wet:dry

Vertebra Centrum Prezyg Postzyg Vertebra Centrum Prezyg Postzyg

Length L R L R Length L R L R

A 23.28 5.95 6.44 6.72 6.63 A 0.966 1.139 1.134 1.170 1.279

B 23.88 6.59 6.56 7.22 7.21 B 1.026 1.143 1.133 1.147 1.044

C 23.96 6.54 6.5 7.8 7.82 C 1.045 1.136 1.040 0.978 1.134

D 23.6 7.23 7.17 7.84 7.81 D 1.038 1.033 1.131 1.133 1.131

E 23.54 7.74 7.61 8.54 8.46 E 1.041 1.092 1.164 1.049 1.096

F 23.01 7.61 7.96 8.24 8.34 F 1.043 1.127 1.101 0.985 1.143

G 22.05 8.1 8.34 8.46 7.97 G 1.034 1.146 1.140 1.000 1.213

H 18.56 9.39 9.56 6.59 7.07 H 1.056 1.019 1.143 1.093 1.218

Total/Avg 181.88 7.39 7.52 7.68 7.66 Average 1.031 1.104 1.123 1.069 1.157

7.46 7.67 1.114 1.113

DEGREASED RATIO wet:degreased

Vertebra Centrum Prezyg Postzyg Vertebra Centrum Prezyg Postzyg

Length L R L R Length L R L R

A 23.15 5.89 6.5 6.42 7.84 A 0.972 1.151 1.123 1.224 1.082

B 23.72 6.6 6.52 7.17 7.43 B 1.033 1.141 1.140 1.155 1.013

C 23.8 6.39 6.37 7.67 7.54 C 1.053 1.163 1.061 0.995 1.176

D 23.56 6.93 7.06 8.25 7.69 D 1.040 1.078 1.149 1.076 1.148

E 23.52 7.83 7.55 8.55 8.39 E 1.042 1.079 1.174 1.048 1.105

F 22.96 7.48 7.95 8.18 7.98 F 1.045 1.147 1.102 0.993 1.194

G 22 8.08 7.56 7.78 7.58 G 1.036 1.149 1.258 1.087 1.276

H 18.52 10.1 9.7 8.01 7.17 H 1.058 0.948 1.127 0.899 1.201

Total/Avg 181.23 7.41 7.4 7.75 7.7 Average 1.035 1.107 1.142 1.060 1.149

7.41 7.73 1.124 1.11

All lengths in mm. This table is also available as file S1.
doi:10.1371/journal.pone.0078214.t001
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vertebrae with nonplanar central articular geometry generally

have little intervening cartilage (pers. obs.), and thus little room for

conjecture regarding their undeflected state’’. Instead, the situation

is more complex: different animals have very different arrange-

ments and the bones alone may not convey sufficient information.

From a veterinary X-ray of a dog (Canis familiaris) we measured a

total length from the posterior margin of C2 to that of C6 of 881

pixels (Figure 22). The intervertebral gaps behind the four

vertebrae C2–C5 were 28, 34, 37 and 39 pixels, for a total of

138. This constitutes 18.6% of bone length (743 pixels). However,

the true thickness of cartilage was probably greater, since the

intervertebral gaps visible in lateral view are from the posterior

margin of the cotyle to the anterior margin of the condyle.

Allowing for the additional thickness of cartilage within the cotyles

would add perhaps 1/4 to these measurements, bringing the

cartilage proportion up to 23%. This neck X-ray is consistent with

those of other dogs illustrated in the veterinary literature [55–57].

The best extant sauropod analogue would be the giraffe (Giraffa

camelopardalis), due to its larger size and much longer neck.

Unfortunately, giraffe necks are difficult to come by, and the only

data we have been able to gather was from the neck of a young

juvenile, two weeks old at the time of death. When intact, the neck

was 51 cm in length; but when the vertebrae were prepared out

and cleaned of cartilage, they articulated to form a misleading

cervical skeleton that is only 41 cm long (Figure 23). In this neck,

intervertebral cartilage contributes 24% of the length that the

bones themselves contribute. No doubt this very high ratio is

Table 2. Length measurements of a turkey neck.

Condition of neck Length Intact as

(mm) proportion

Intact before dissection 189.5 0.00%

Articulated sequence of wet vertebrae immediately after dissection 186 1.88%

Sum of lengths of individual wet centra 187.45 1.09%

Articulated sequence of vertebrae after removal of all flesh and drying 179 5.87%

Sum of lengths of individual dry centra 181.88 4.19%

Articulated sequence of vertebrae after degreasing in H2O2 and drying 178 6.46%

Sum of lengths of individual degreased centra 181.23 4.56%

For each measurement, the length of the intact neck is given as a proportion, indicating by what factor the various measurements would need to be increased to yield
the true length in life.
doi:10.1371/journal.pone.0078214.t002

Figure 17. Effect on neutral pose of including cartilage on ONP.
Effect on neutral pose of including cartilage. Top: dorsal view of a
turkey cervical vertebra: vertical red line indicates the position of the
most anterior part of the midline of the anterior articular surface, which
is obscured in later view. Second row: two such vertebrae arranged in
osteological neutral pose, with the articular surfaces of the centra
abutting and the zygapophyseal facets maximally overlapped. The
anterior vertebra is inclined by about 16u relative to the posterior. Third
row: two such vertebra, with the centrum of the more posterior one
elongated by 6.46% to allow for intervertebral cartilage (shown in blue),
and the more anterior positioned with its centrum articulating with the
cartilage and the zygapophyses maximally overlapped. The anterior
vertebra is inclined by about 31u. The inclusion of cartilage has raised
neutral posture by 15u. Green lines represent a horizontal baseline,
joining the most ventral parts of the anterior and posterior ends of the
vertebrae.
doi:10.1371/journal.pone.0078214.g017

Figure 18. Cartilage in the neck of a rhea. Joint between cervicals
11 (left) and 10 (right) of a rhea, sagittally bisected. Left half of neck in
medial view. The thin layers of cartilage lining the C11 condyle and C10
cotyle are clearly visible.
doi:10.1371/journal.pone.0078214.g018
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largely due to the incomplete ossification of the bones of a young

juvenile: it would be interesting to carry out the same exercise with

the neck of an adult giraffe, to see whether giraffes more closely

resemble camels or horses in the thickness of their intervertebral

cartilage.

Finally, Evans [58] measured the thickness of intervertebral

cartilage preserved in the complete, articulated fossilised necks of

two plesiosaurs. He found that it came to 14% of centrum length

in Muraenosaurus and 20% in Cryptoclidus.

These results are summarised in Table 4. Across all 13 surveyed

animals, and using midpoints of ranges for Apatosaurus, the mean

cartilage/bone ratio is 12.5%, and the median is 14.0%. But there

is a great deal of variation (standard deviation = 6.9%). For this

reason, and because some juvenile individuals were included, and

because the measurements were obtained by a variety of different

methods, simple averages are not reliable. With that caveat,

averages by clade are as follows: sauropods 13.2%, birds 4.5%,

crocodilians 14.9%, mammals 15.2% and plesiosaurus 17%.

Discussion

Implications for sauropod necks
The morphology of intervertebral cartilage in the sauropods is

not known, and cannot presently be determined from osteological

correlates, as none have yet been identified for bird- and mammal-

style intervertebral joints. It is notable that in the examined extant

animals with true intervertebral discs (crocodilians and mammals)

the cartilage:bone ratios are three times higher than in birds. The

relatively low cartilage ratio for Sauroposeidon and the high ratio for

Apatosaurus, taken in isolation, perhaps suggests some variation in

morphology within Sauropoda, with Sauroposeidon having bird-style

synovial intervertebral joints and Apatosaurus having true discs.

Such variation would not be unprecedented: the presence of

simple articular discs in the ostrich and their absence in the rhea

shows that variation exists even at low taxonomic levels. However,

the difference in proportional cartilage thickness between these

two sauropods is more parsimoniously explained as due to the

Table 3. Measurements of centrum lengths and intervertebral cartilage in the sagittally bisected neck of a rhea.

Segment length Condyle cartilage Cotyle cartilage Bone Cartilage%

Left Right Avg. Left Right Avg. Left Right Avg. Length Of bone Of total

C4 32.3 31.9 32.1 0.43 0.51 0.51 31.2 3.00 2.91

C5 36.1 36.8 36.5 0.41 0.41 0.93 0.93 35.1 3.82 3.68

C6 39.3 39.2 39.3 0.57 0.57 0.58 0.58 38.1 3.02 2.93

C7 39.9 40.3 40.1 0.43 0.74 0.47 0.61 39.1 2.64 2.57

C8 41.5 41.1 41.3 0.43 0.44 0.39 0.42 40.5 2.08 2.03

C9 41.8 42.4 42.1 0.36 0.36 0.57 0.43 0.50 41.2 2.09 2.04

C10 40.6 41.0 40.8 0.42 0.42 0.53 0.43 0.48 39.9 2.26 2.21

C11 38.3 38.6 38.5 0.31 0.47 0.39 0.32 0.38 0.35 37.7 1.96 1.92

C12 37.4 37.0 37.2 0.39 0.43 0.41 0.40 0.35 0.38 36.4 2.16 2.11

C13 34.2 33.8 34.0 0.48 0.39 0.44 0.58 0.47 0.53 33.0 2.91 2.82

Avg. 38.14 38.21 38.2 0.39 0.46 0.42 0.56 0.42 0.53 37.2 2.59 2.52

All measurements are in mm. ‘‘Segment’’ here means a centrum including its anterior and posterior articular cartilage. Empty cells represent surfaces so torn up by the
bandsaw used in bisection that accurate measurements were impossible. There are more of these empty cells on the right than on the left because of how the saw
trended; the cut was not perfectly on the midline. For C4, C7 and C8, condyle cartilage thickness could not be accurately measured on either side, so an estimate of the
average was used. This table is also available as file S2.
doi:10.1371/journal.pone.0078214.t003

Figure 19. Alligator head and neck. Sagittally bisected head and
neck of American alligator, with the nine cervical vertebrae indicated.
Inset: schematic drawing of these nine vertebrae, from ([62]: figure 1),
reversed.
doi:10.1371/journal.pone.0078214.g019

Figure 20. Horse head and neck. Sagittally bisected head and
anterior neck of a horse. The first four cervical vertebrae are complete,
but the posterior part of the fifth is absent. Note that the condyles are
deeply embedded in their cotyles.
doi:10.1371/journal.pone.0078214.g020
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elongation of the Sauroposeidon vertebrae and the juvenile nature of

the Apatosaurus specimens.

As shown by the contrasting morphology of horse and camel

necks, similarly shaped vertebrae of different animals may be

augmented by a dramatically different shape and amount of

cartilage. It may be that, in the same way, different sauropods had

significantly different cartilaginous contributions to their necks.

Given information regarding one sauropod group, we must be

cautious not to assume that it generalises to all others.

With these caveats in mind, and based on the limited

information currently available, it is reasonable to guess that most

adult sauropods had cartilage/bone ratios of about 5–10% – that

the lower figure for Sauroposeidon is a result of its extreme vertebral

elongation and the higher figure for Apatosaurus is due to its

proportionally shorter vertebrae. We obtained similar estimates for

the cartilage thickness in an adult Apatosaurus neck by scaling up

from the juvenile material and scaling down, proportionally, from

Sauroposeidon, which suggests that unlike mammals, juvenile

sauropods may not have had proportionally thicker intervertebral

cartilage than adults.

In the neck of a turkey, adding 4.56% to bony centrum length

to restore the absent cartilage resulted in neutral pose being raised

by 15u at each joint. This increase in extension is roughly

proportional to the proportion of cartilage restored and inversely

proportional to the height of the zygapophyses above the centre of

rotation – very high zygapophyses would mean that the increased

length of the centrum with cartilage restored would subtend only a

small angle at the zygapophyses, while low zygapophyses would

result in a wider angle. Zygapophysis height varies among different

sauropods, and along the neck of each; but as a proportion of

centrum length it is generally reasonably close to that of turkey

cervicals. It therefore seems reasonable to conclude that restoring

the missing cartilage to sauropod vertebrae would raise neutral

posture commensurately, although it is not possible to give

meaningful quantitative results without detailed modelling.

If the neutral posture of each joint in a sauropod’s neck was

raised, perhaps by as much as 15u, it may seem that this would

result in an absurd neutral posture in which the neck curls back

over the torso. In practice, as has often been noted [20,45,46],

animals do not hold their necks in neutral posture, but habitually

extend the base of the neck and flex the more anterior portion.

This pattern of behaviour combined with more extended neutral

postures than previously envisaged indicates that swan-like

postures may have been very common, and that in some

sauropods it may have been common to hold the middle region

of the neck at or even beyond vertical.

Figure 21. Camel neck in X-ray. X-ray image of a camel, with tracing
to highlight the centra of cervical vertebrae 2–7. (C1 and the anterior
part of C2 are obscured by the skull.) Note that most of the condyles do
not even reach the posterior margins of their corresponding cotyles, let
alone embed deeply within them.
doi:10.1371/journal.pone.0078214.g021

Figure 22. Dog neck in X-ray. Neck of a dog (dachsund), in X-ray,
with the seven cervical vertebrae indicated. This photo has been used
with permission from the Cuyahoga Falls Veterinary Clinic.
doi:10.1371/journal.pone.0078214.g022

Figure 23. Neck of a young juvenile giraffe. Neck of a young
juvenile giraffe, in various states of dissection, to scale. Top, the neck as
received, skinned and stripped of skin, oesophagus and trachea.
Second, the neck with most muscle removed and the nuchal ligament
stretched out. Third, the vertebrae cleaned of soft tissue and cartilage,
laid out with equal intervertebral spacing to attain the same total
length as when intact (51 cm). Fourth, the vertebrae in the same
condition but articulated as closely as possible, forming a misleading
cervical skeleton measuring only 41 cm. Top image in left lateral view;
second in right lateral view, reversed; third and fourth in left
dorsolateral.
doi:10.1371/journal.pone.0078214.g023
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We found that the anteroposterior length of the zygapophyseal

facets of turkey cervicals were, on average, 11% longer when

cartilage was intact than after it was removed. It is reasonable to

assume that a similar proportion held for sauropods. The effect of

longer zygapophyseal facets on ROM is very straightforward:

ROM increases more or less linearly with zygapophyses length, so

an 11% increase in the latter translates directly to an 11% increase

in dorsoventral flexibility at each neck joint. Of course, if the neck

were thought for other reasons to be very inflexible, an 11%

increase in small ROM angles would not make a particularly big

difference. Calculating absolute values for ROM requires detailed

modelling that is beyond the scope of this study.

In apparent contradiction to this, recent work [47] shows that

ostrich necks with their soft tissue in place are less flexible than

bones alone indicate, and suggests that the same would have been

true of sauropod necks. In interpreting this result, it is important to

bear two things in mind. First, whatever it may do to range of

motion, including intervertebral cartilage unquestionably raises

neutral pose: it is for this reason that the habitual life posture of

rabbits is more raised than can be attained by the bones of the

neck even in maximum extension [20]. Second, the effect of soft

tissues on neck flexibility differs among taxa. For example, in

humans, where the cervical vertebrae are mildly amphicoelous,

there is no ball-and-socket joint, so no obvious way for one

vertebra to rotate with respect to those before and after it. But the

thick intervertebral discs, with their roughly spherical nuclei,

provide a centre of rotation: as the neck flexes and extends, the

discs become wedge-shaped to accommodate motions that the

bones alone would not permit [59]. More comparative work is

needed to determine the different effects of soft tissue on flexibility

in different taxa, and to enable conclusions to be drawn regarding

extinct animals.

In summary, including cartilage in our models of sauropod

necks shows that they were longer, more raised and probably more

flexible than previously recognised.

Future work
This study represents only a beginning, not an end, to the work

on the neck cartilage of sauropods (and other extinct animals). We

would like to see future work extend this in the following ways.

N CT scans of more sauropod neck segments that preserve

vertebrae in articulation – ideally much more complete necks

than the ones described here.

N Measurements of intervertebral cartilage thickness and zyga-

pophyseal cartilage extent for more extant animals: especially

birds and crocodilians, which together form an extant

phylogenetic bracket for sauropods; and an adult giraffe,

which has much the longest neck of any extant animal.

N Intervertebral and zygapophyseal cartilage measurements for

individuals of different growth stages within single species, to

determine how the amount and shape of cartilage varies

through ontogeny.

N Work to determine whether dry bones have any osteological

correlates that are informative regarding the morphology of

intervertebral cartilage: true intervertebral discs, or synovial

joints with or without articular discs.

N Finally, we would very much like to see the results of re-

running the DinoMorph software with its models updated to

take into account intervertebral and zygapophyseal cartilage.

At present this is the only software that has been used to model

intervertebral joints; if it remains unavailable then it may be

possible to use more general-purpose CAD packages to

achieve the same ends.

Conclusions

A survey of intervertebral spacing and cartilage thickness in

extinct and extant amniotes reveals several factors that affect any

attempts to model vertebral articulations:

Table 4. Cervical intervertebral cartilage thickness in a variety of taxa, expressed as a percentage of bony centrum length.

Taxon Thickness Reference Notes

Sauroposeidon 4.50% This study Measurements from CT scan of articulated material. Vertebrae are proportionally long mid-
cervicals; averaged over the whole neck the thickness is estimated to have been 5.8%.

Apatosaurus CM 3390 16–24% This study Measurements from CT scan of articulated material. Vertebrae are most anterior dorsals.

Apatosaurus CM 11339 14.80% This study Measurements from CT scan of articulated material. Vertebrae are middle or posterior dorsals.

Turkey 4.56% This study Difference in measurements of intact neck and articulated sequence of cleaned, degreased and
dried vertebrae.

Ostrich 6.30% [47] Difference in measurements of individual vertebrae with and without cartilage.

Rhea 2.59% This study Measurement of in situ cartilage in bisected neck.

Alligator 14.90% This study Measurement of in situ cartilage from photograph of cross section.

Horse 6.90% This study Measurement of in situ cartilage from photograph of cross section.

Camel 13.00% This study Crude measurement from condyle margin to cotyle lip of lateral-view X-ray. This is an interim
measurement, which we hope to improve on when we obtain better images.

Dog 17.00% This study Measurement of intervertebral gaps in lateral-view X-ray, uncorrected for likely concavity of
cotyles.

Giraffe 24.00% This study Difference in measurement of intact neck and closely articulated sequence of cleaned vertebrae.
Young juvenile specimen.

Muraenosaurus 14.00% [58] Measurement of in situ cartilage in fossils.

Cryptoclidus 20.00% [58] Measurement of in situ cartilage in fossils.

doi:10.1371/journal.pone.0078214.t004
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1. The thickness of intervertebral cartilage is highly variable

among taxa, ranging from 2.6% of centrum length in a rhea to

24% of centrum length in a baby giraffe. Even if we restrict the

sample to presumably adult animals, the range is 2.6% to 20%

– a factor of almost eight.

2. There seem to be some systematic differences among clades:

mammals and other non-avian amniotes typically have thicker

intervertebral cartilage than birds. Intervertebral spacing is

particularly high in plesiosaurs, perhaps because of their

proportionally short vertebral centra (i.e., the cartilage was not

thicker absolutely than in similarly sized animals, but only in

comparison to the shorter vertebrae).

3. Based on our admittedly limited sample, sauropods appear to

have been intermediate between birds and other amniotes in

the thickness of the intervertebral cartilage in the neck, with

cartilage accounting for 5–10% of the lengths of the centra in

adults.

4. Although only two of our sampled sauropod specimens have

strongly opisthocoelous centra, in both of those cases the bony

condyle is not shaped to fit the cotyle, and the intervertebral

cartilage is thicker anteroposteriorly at the centre than radially

at the cotyle rim. More sampling is required to determine if this

is a general feature of sauropods, convergent in Apatosaurus and

Sauroposeidon, or variable among individuals and along the

column.

5. At present, there are no known osteological correlates of

different intervertebral joint types (intervertebral disc, synovial

joint, synovial joint with articular disc).

6. At present, there are no known osteological correlates of thick

versus thin intervertebral cartilage. For example, horses and

camels both have strongly opisthocoelous cervical vertebrae,

but their intervertebral spacing is very different: in camels, the

condyles do not even reach the rims of the cotyles, much less

articulate with them directly.

These difficulties and uncertainties do not render attempts to

model intervertebral joint mechanics uninformative or worthless.

However, it is clear that intervertebral cartilage is a significant

fraction of the length of the bony cervical series in most amniotes,

as well as highly variable among taxa. Therefore, assumptions

about intervertebral cartilage in biomechanical models must be

explicit in choice of reference taxa, type of intervertebral joint, and

thickness of cartilage. Sensitivity analyses using DinoMorph or

other CAD software to quantify the variation in ONP and ROM

imposed by different starting assumptions would be extremely

valuable; indeed it is difficult to see how digital ONP and ROM

estimates can be useful in the absence of such analyses. Recent

work on the prosauropod Plateosaurus [28,60] shows how this can

be done for extinct dinosaurs; applying these techniques to

sauropod necks would be informative.

More generally, we need to look more carefully at both fossils

and extant organisms. In the extant realm, a search for possible

osteological correlates of intervertebral joint type and cartilage

thickness is very badly needed. But aside from that, simply

documenting the cartilage thickness in a wider range of taxa will

be useful in elucidating ontogenetic, phylogenetic, and size-related

variation among individuals and clades. The same survey can be

extended to articulated fossil material. Although complete,

undistorted cervical material is rare for sauropods, a more

extensive and careful survey of articular morphology will allow

future workers to better constrain their models, and may also turn

up characters of potential biomechanical and phylogenetic

interest, such as the unusually flattened condyles in middle

cervical vertebrae of Sauroposeidon. All specimens that have both

centra and zygapophyses in articulation should be CT scanned

where this is logistically feasible.

We have attempted a first step toward understanding how

intervertebral cartilage affected the postures and ranges of motion

of sauropod necks. We hope that further work makes this paper

obsolete very quickly.

Supporting Information

File S1 Data from Table 1 in more useful format.

(XLS)

File S2 Detailed data on rhea neck cartilage.

(XLS)

Acknowledgments

We thank Matt Lamanna, David Berman, and Amy Henrici for access to

Carnegie Museum Apatosaurus specimens, and Rich Cifelli, Nick Cza-

plewski, and Jennifer Larsen for access to the Sauroposeidon specimen. The

staff of the Oklahoma University Medical Center Department of

Radiological Sciences assisted with CT scans of sauropod vertebrae: we

especially thank B. G. Eaton for access to CT facilities, Thea Clayborn,

Kenneth Day, and Susan Gebur for performing the scans, and R. Kent

Sanders for overseeing the scanning, reconstructing the data, and

interpreting the results. We also thank Eileen Foate, Elizabeth Mock,

and Tami Miller of Western University Veterinary Medicine for help with

animal specimens and for dissecting tools and support. Thanks are also due

to Kevin Vale of Vale Butchers, Drybrook, UK, for providing the turkey

neck, John Hutchinson of the Royal Veterinary College, UK, for providing

the juvenile giraffe neck, Ruth Elsey of Rockefeller Wildlife Refuge, Grand

Chenier, Louisiana, for providing the alligator, the College of Veterinary

Medicine at Western University of Health Sciences, California, for access

to the hemisected horse head and neck, Cuyahoga Falls Veterinary Clinic

in Cuyahoga Falls, Ohio (http://fallsvetclinic.com/) for providing the dog

X-ray image, Gordon Dzemski of the University of Flensburg, Germany,

for the camel X-ray, and the Museum für Naturkunde Berlin for

permission to use the Giraffatitan photograph.

Finally, we thank our handling editor Peter Dodson and our reviewers

Heinrich Mallison and Andreas Christian for their clear and helpful

comments.

Author Contributions

Conceived and designed the experiments: MPT MJW. Performed the

experiments: MPT MJW. Analyzed the data: MPT MJW. Wrote the

paper: MPT MJW.

References

1. Taylor MP, Wedel MJ (2013) Why sauropods had long necks; and why giraffes

have short necks. PeerJ 1: e36. doi:10.7717/peerj.36.

2. Paul GS (1988) The brachiosaur giants of the Morrison and Tendaguru with a

description of a new subgenus, Giraffatitan, and a comparison of the world’s

largest dinosaurs. Hunteria 2(3): 1–14.

3. Carpenter K (2006) Biggest of the big: a critical re-evaluation of the mega-

sauropod Amphicoelias fragillimus Cope, 1878. New Mexico Museum of Natural

History and Science Bulletin 36: 131–137.

4. Sander PM, Christian A, Clauss M, Fechner R, Gee CT, et al. (2011) Biology of

the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86: 117–

155. doi:10.1111/j.1469-185X.2010.00137.x.

5. Marsh OC (1883) Principal characters of American Jurassic dinosaurs. Pt. VI.

Restoration of Brontosaurus. American Journal of Science, Series 3 26: 81–85.

6. Hatcher JB (1901) Diplodocus (Marsh): its osteology, taxonomy and probable

habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:

1–63.

7. Matthew WD (1905) The mounted skeleton of Brontosaurus. The American

Museum Journal 5: 62–70.

Cartilage in Sauropod Necks

PLOS ONE | www.plosone.org 16 October 2013 | Volume 8 | Issue 10 | e78214



8. Knight CR (1897) Restoration of Brontosaurus. Hall of Saurischian Dinosaurs,

American Museum of Natural History. Guache on artist board.
9. Zallinger RF (1947) The Age of Reptiles. Mural in the Dinosaur Hall, Yale

Peabody Museum.

10. Burian Z (1941) Snorkelling Brachiosaurus. Reproduced in: Augusta, Joseph
(1957) Prehistoric Animals. London: Spring Books.

11. Bakker RT (1986) The Dinosaur Heresies. New York: Morrow. 481 p.
12. Spielberg S (1993) Jurassic Park. Amblin Entertainment.

13. Stevens KA, Parrish JM (1999) Neck posture and feeding habits of two Jurassic

sauropod dinosaurs. Science 284: 798–800.
14. Martin J (1987) Mobility and feeding of Cetiosaurus (Saurischia: Sauropoda) - why

the long neck? Occasional Papers of the Tyrrell Museum of Palaeontology
(Fourth Symposium on Mesozoic Terrestrial Ecosystems) 3: 154–159.

15. Haines T (1999) Walking with Dinosaurs. BBC Worldwide.
16. Stevens K (2002) DinoMorph: Parametric modeling of skeletal structures.

Senckenbergiana Lethaea 82: 23–34.

17. Stevens KA, Parrish JM (2005) Digital reconstructions of sauropod dinosaurs
and implications for feeding. In: Tidwell V, Carpenter K, editors. The

Sauropods: Evolution and Paleobiology. Berkeley: University of California Press.
pp. 178–200.

18. Stevens KA, Parrish JM (2005) Neck posture, dentition, and feeding strategies in

Jurassic sauropod dinosaurs. In: Curry Rogers K, Wilson J, editors. Thunder-
lizards: the sauropodomorph dinosaurs. Bloomington: Indiana University Press.

pp. 212–232.
19. Dzemski G, Christian A (2007) Flexibility along the neck of the ostrich (Struthio

camelus) and consequences for the reconstruction of dinosaurs with extreme neck
length. Journal of Morphology 268: 701–714. doi:10.1002/jmor.10542.

20. Taylor MP, Wedel MJ, Naish D (2009) Head and neck posture in sauropod

dinosaurs inferred from extant animals. Acta Palaeontologica Polonica 54: 213–
220.

21. Christian A (2010) Some sauropods raised their necks — evidence for high
browsing in Euhelopus zdanskyi. Biol Lett 6: 823–825. doi:10.1098/

rsbl.2010.0359.

22. Upchurch P (2000) Neck Posture of Sauropod Dinosaurs. Science 287: 547b.
23. Paul GS (2000) Restoring the life appearances of dinosaurs. In: Paul GS, editor.

The Scientific American book of dinosaurs. New York: St. Martin’s Press. pp.
78–106.

24. Schwarz D, Wings O, Meyer CA (2007) Super sizing the giants: first cartilage
preservation at a sauropod dinosaur limb joint. Journal of the Geological Society

164: 61–65. doi:10.1144/0016-76492006-019.

25. Mallison H (2010) CAD assessment of the posture and range of motion of
Kentrosaurus aethiopicus Hennig 1915. Swiss Journal of Geosciences 103: 211–233.

26. Emerson CL, Eurell JAC, Brown MD, Walsh M, Odell D, et al. (1990)
Ruptured intervertebral disc in a juvenile king penguin (Aptenodytes patagonica).

Journal of Zoo and Wildlife Medicine 21: 345–350.

27. Holliday CM, Ridgely RC, Sedlmayr JC, Witmer LM (2010) Cartilaginous
epiphyses in extant archosaurs and their implications for reconstructing limb

function in dinosaurs. PLoS ONE 5: e13120. doi:10.1371/journal.pone.0013120.
28. Mallison H (2010) The digital Plateosaurus II: an assessment of the range of

motion of the limbs and vertebral column and of previous reconstructions using
a digital skeletal mount. Acta Palaeontologica Polonica 55: 433–458.

doi:10.4202/app.2009.0075.

29. Bonnan MF, Sandrik JL, Nishiwaki T, Wilhite DR, Elsey RM, et al. (2010)
Calcified cartilage shape in archosaur long bones reflects overlying joint shape in

stress-bearing elements: Implications for nonavian dinosaur locomotion. The
Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology

293: 2044–2055. doi:10.1002/ar.21266.

30. Wake MH, editor (1992) Hyman’s comparative vertebrate anatomy, 4th ed.
University of Chicago Press. Available: http://books.google.co.uk/books

?hl = en&lr = &id = VKlWjdOkiMwC&oi = fnd&pg = PR9&dq = Hyman%27s+
Comparative+Vertebrate+Anatomy&ots = Kf4jZ2q4BS&sig = -Hqon9F-i3hNIIw

J7cUWr5NItv4. Accessed 13 August 2013.

31. Liem KF, Walker WF, Bemis WE, Grande L (2001) Functional anatomy of the
vertebrates: an evolutionary perspective. Harcourt College Publishers Philadel-

phia. Available: http://library.wur.nl/WebQuery/clc/1869344. Accessed 13
August 2013.

32. Baumel JJ, King AS, Breazile JE, Evans HE, Berge JCV (1993) Handbook of
Avian Anatomy: Nomina Anatomica Avium, Second Edition. CambridgeMas-

Massachusetts: Nuttall Ornithological Club. 779 p.

33. Witmer LM (1995) The extant phylogenetic bracket and the importance of
reconstructing soft tissues in fossils. In: Thomason JJ, editor. Functional

morphology in vertebrate paleontology. Cambridge, UK: Cambridge University
Press. pp. 19–33.

34. Hultgren BD, Wallner-Pendleton E, Watrous BJ, Blythe LL (1987) Cervical

dorsal spondylosis with spinal cord compression in a black swan (Cygnus atratus).
J Wildl Dis 23: 705–708.

35. Wedel MJ, Cifelli RL, Sanders RK (2000) Sauroposeidon proteles, a new sauropod
from the Early Cretaceous of Oklahoma. Journal of Vertebrate Paleontology 20:

109–114.

36. Wedel MJ, Cifelli RL, Sanders RK (2000) Osteology, paleobiology, and

relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica

Polonica 45: 343–388.

37. Wedel MJ, Cifelli RL (2005) Sauroposeidon: Oklahoma’s native giant. Oklahoma

Geology Notes 65: 40–57.

38. McIntosh JS (1981) Annotated catalogue of the dinosaurs (Reptilia, Archosauria)

in the collections of Carnegie Museum of Natural History. Bulletin of the

Carnegie Museum 18: 1–67.

39. Wedel MJ, Sanders RK (2002) Osteological correlates of cervical musculature in

Aves and Sauropoda (Dinosauria: Saurischia), with comments on the cervical

ribs of Apatosaurus. PaleoBios 22: 1–6.

40. Harvey EB, Kaiser HE, Rosenberg LE (1968) An atlas of the domestic turkey

(Meleagris gallopavo): myology and osteology. U.S. Atomic Energy Commission,

Division of Biology and Medicine. 268 p.

41. Janensch W (1950) Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica

(Suppl 7) 3: 27–93.

42. Wedel MJ (2005) Postcranial skeletal pneumaticity in sauropods and its

implications for mass estimates. The Sauropods: Evolution and Paleobiology.

Berkeley: University of California Press. pp. 201–228.

43. Gilmore CW (1936) Osteology of Apatosaurus, with special reference to specimens

in the Carnegie Museum. Memoirs of the Carnegie Museum 11: 175–298.

44. Wedel MJ (2003) The evolution of vertebral pneumaticity in sauropod dinosaurs.

Journal of Vertebrate Paleontology 23: 344–357.

45. Vidal PP, Graf W, Berthoz A (1986) The orientation of the cervical vertebral

column in unrestrained awake animals. Exp Brain Res 61: 549–559.

doi:10.1007/BF00237580.

46. Graf W, De Waele C, Vidal PP (1995) Functional anatomy of the head-neck

movement system of quadrupedal and bipedal mammals. J Anat 186: 55–74.

47. Cobley MJ, Rayfield EJ, Barrett PM (2013) Inter-vertebral flexibility of the

ostrich neck: implications for estimating sauropod neck flexibility. PLOS ONE 8:

e72187. doi:10.1371/journal.pone.0072187.

48. Kimball S, Mattis P (2010) GIMP - The GNU Image Manipulation Program.

Available: http://www.gimp.org/. Accessed 10 March 2013.

49. Wagner PC, Bagby GW, Grant BD, Gallina A, Ratzlaff M, et al. (1979) Surgical

Stabilization of the Equine Cervical Spine. Veterinary Surgery 8: 7–12.

doi:10.1111/j.1532-950X.1979.tb00596.x.

50. Papageorges M, Gavin PR, Sande RD, Barbee DD, Grant BD (1987)

Radiographic and Myelographic Examination of the Cervical Vertebral Column

in 306 Ataxic Horses. Veterinary Radiology 28: 53–59. doi:10.1111/j.1740-

8261.1987.tb01725.x.

51. Whitwell KE, Dyson S (1987) Interpreting radiographs 8: Equine cervical

vertebrae. Equine Veterinary Journal 19: 8–14. doi:10.1111/j.2042-

3306.1987.tb02568.x.

52. Hudson NPH, Mayhew IG (2005) Radiographic and myelographic assessment

of the equine cervical vertebral column and spinal cord. Equine Veterinary

Education 17: 34–38. doi:10.1111/j.2042-3292.2005.tb00333.x.

53. Glass K, Baird AN, Baird DK, Del Piero F (2003) Vertebral malformation in

two alpacas. The Camelid Quarterly June 2003: 1–2.

54. McKenzie EC, Seguin B, Cebra CK, Margiocco ML, Anderson DE, et al.

(2010) Esophageal dysfunction in four alpaca crias and a llama cria with vascular

ring anomalies. J Am Vet Med Assoc 237: 311–316. doi:10.2460/

javma.237.3.311.

55. McKee WM, Butterworth SJ, Scott HW (1999) Management of cervical

spondylopathy-associated intervertebral, disc protrusions using metal washers in

78 dogs. J Small Anim Pract 40: 465–472.

56. Levitski RE, Lipsitz D, Chauvet AE (1999) Magnetic Resonance Imaging of the

Cervical Spine in 27 Dogs. Veterinary Radiology & Ultrasound 40: 332–341.

doi:10.1111/j.1740–8261.1999.tb02120.x.

57. Da Costa RC, Parent J, Dobson H, Holmberg D, Partlow G (2006) Comparison

of magnetic resonance imaging and myelography in 18 Doberman pinscher dogs

with cervical spondylomyelopathy. Vet Radiol Ultrasound 47: 523–531.

58. Evans M (1993) An investigation into the neck flexibility of two plesiosauroid

plesiosaurs: Cryptoclidus eurymerus and Muraenosaurus leedsii. University College:

MSc thesis. London p.

59. Kapandji IA (2008) The physiology of the joints: annotated diagrams of the

mechanics of the human joints Vol. 3, Vol. 3,. Edinburgh [etc.]: Churchill

Livingstone/Elsevier.

60. Mallison H (2010) The digital Plateosaurus I: body mass, mass distribution, and

posture assessed using CAD and CAE on a digitally mounted complete skeleton.

Palaeontologia Electronica 13. Available: http://www.uv.es/,pardomv/pe/

2010_2/198/abstracts.html. Accessed 24 November 2012.

61. Taylor MP (2009) A re-evaluation of Brachiosaurus altithorax Riggs 1903

(Dinosauria, Sauropoda) and its generic separation from Giraffatitan brancai

(Janensch 1914). Journal of Vertebrate Paleontology 29: 787–806.

62. Frey E (1988) Anatomie des Körperstammes von Alligator mississippiensis Daudin.
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